

Nme --�
Before using this information and the product it supports, be sure to read the general information under

"Notices" on page xv.

First Edition (March 1992)

The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent
with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not

allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to

you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the

information herein; these changes will be incorporated in new editions of the publication. IBM may make

improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and

programs), programming, or services that are not announced in your country. Such references or information must

not be construed to mean that IBM intends to announce such IBM products, programming, or services in your

country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or your IBM

Marketing Representative.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of

this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM

Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which

illustrate OS/2 programming techniques. You may copy and distribute these sample programs in any form without

payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to

the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must

include a copyright notice as follows: "©(your company name) (year) All Rights Reserved."

©Copyright International Business Machines Corporation 1992. All rights reserved.
Note to U.S. Government Users- Documentation related to restricted rights- Use, duplication or disclosure is

subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

/� Contents

© Copyright IBM Corp. 1 992

Notices . xv
Trademarks and Service Marks • . xv

Double-Byte Character Set (DBCS) . xvi

About This Book . xvii
Who Should Read This Book . xvii
How This Book is Organized . xvii
OS/2 2.0 Technical Library . xviti

Chapter 1 . OS/2 2.0 Overview . 1-1

OS/2 2.0 Highlights . 1-1

386 Features 1-1

Portability 1-1

Compatibility with Version 1.X 1-2

Multiple DOS Sessions . • . 1-2

Virtual Device Drivers 1-2

The OS/2 Operating System and Presentation Manager Program 1-2

Queued Input , 1-3

Device-Independent Graphics , 1-4

Shared Resources . 1-4

Control Program Fundamentals .. 1-4

Multitasking . 1-4
Sessions .. 1-5

Processes ... 1-6

Threads . 1-6

Dynamic Linking . 1�7
Memory Management 1-7

The File System 1-8
lnterprocess Communication . 1-10

Semaphores· .. . 1-10

Pipes 1-10

Queues . 1-11

Shared Memory . 1-1 1

Exception Handling . 1-11

Multiple DOS Sessions . 1-11

Device Support . 1-12

PM Fundamentals . 1-13

The Window Environment . 1-13

Defining Window Relationships . 1-13

Creating and Classifying Windows . 1-15

Providing the User Interface . 1-16

Standard and Control Windows . 1-16

Primary and Secondary Windows . 1-18

Dialog Box . 1-18

Handling Mouse and Keyboard Input . 1 -19

Processing Messages . 1-19

Handling Application Resources . 1-21

Resource Editors . 1-22

Exchanging Data Among Applications . 1-22
User-Generated Data Exchange . 1-22

Application-Generated Data Exchange . 1-23

Direct Manipulation . 1-23

iii

Information Presentation Facility 1-23
Coding the Application 1-24

Developing the Help Information 1-24
Presentation Drivers 1-24

The Graphics Programming Interface 1-24
Presentation Spaces and Device Contexts

Graphics Primitives

Graphics Objects and Operations

Path

Bit Map
Font

Logical Color Palette

Clipping

Transformation

Drawing .. .

Retained Graphics and Segments

Metafiles .. .

Producing Hard-Copy Output

1-24

1-25

1-26

1-26
1-26
1-26

1-26

1-27

1-27

1-27

1-28

1-28

1-28

The OS/2 Application Programming Interface Functions 1-29

Chapter 2. The 32-bit OS/2 Programming Environment 2-1

Intel 80386 Architecture 2-1

Physical Characteristics 2-2

Memory Addressing 2-3

Real Mode .. . 2-3

Protect Mode (Segmented Memory Model) . 2-4
Protect Mode (Flat Memory Model) . 2-6

Paging . 2-6

Protection . 2-8

Type Checking . 2-8

Limit Checking . 2-8

Privilege Levels . 2-9

Restriction of Procedure Entry Points . 2-9

Reserved Instructions . 2-10

Interrupts . 2-10

Input/Output Processing . 2-11

Virtual 8086 Mode . 2-11

Numeric Coprocessor . 2-12

Coprocessing . 2-13

OS/2 and the 80386 Processor . 2-13

Process Address Space . 2-14

Memory Objects and Memory Sharing . 2-15

Page Attributes and Memory Access Protection 2-17
Compatibility with 16-Bit OS/2 . 2-18

Summary . 2-20

Chapter 3. The Application Development Environment 3-1

Applications Running Under OS/2 3-1

Full-Screen Applications . 3-2

Windowable Applications 3-2

PM Applications . 3-3
DOS/Windows Applications . 3-4

Programming Models . 3-5

Pure 16-Bit Applications . 3-5

Mixed 16-Bit Applications 3-6

Pure 32-Bit Applications . 3-7

iv Appl ication Design G u ide

�

-�

Mixed 32-Bit Applications 3-8

The Program Development Environment 3-9

Include File Architecture . 3-10

C Compiler Support . 3-11

Library Support . 3-12

Mixing 16-Bit and 32-Bit Code . 3-12

Thunking . 3-12

32-Bit OS/2 Memory Layout . 3-15

Flat Memory . 3-15

Tiled Memory . 3-15

Different Parameter Sizes . 3-18

64K Segment Boundary Problems . 3-18

Different Call Models . 3-19

Calling 16-Bit Code from 32-Bit Code . 3-19

Using the _Seg16 and _Far16 _Pascal keywords 3-20

Formal Parameters . 3-21

Examples of using _Far16 _Pascal and _Seg16 3-25

Function Calls to 16-Bit Modules . 3-29

Using 16-Bit Window Procedures . 3-29

Creating a Window 3-29

Passing Messages to 16-Bit Windows . 3-30

Passing Messages to 32-Bit Windows . 3-31

Camng 32-Bit Code from 16-Bit Code . 3-33

Migrating to OS/2 2.0 . 3-33

Summary . 3-35

Chapter 4. Comparison of 1 6-Bit and 32-Bit OS/2 Functions 4-1
Changes to the Control Program 4-1

Memory Management 4-1

Allocating Memory . 4-2

Freeing Memory 4-4

Suballocating Memory 4-4

Using Named Shared Memory . 4-6

Using Unnamed Shared Memory 4-8

Generating Dynamic Code 4-9

Determining Available Memory 4-11

Discarding Memory Objects 4-11

Setting Memory Commitment and Access 4-11

Checking a Process's Virtual-Memory Map 4-11

Threads and Processes . 4-12

Creating Threads . 4-12

Controlling Threads . 4-13

Exiting from Threads and Processes . 4-13

Ending Other Processes . 4-14

Handling Critical Sections . 4-14

Waiting for Threads . 4-14

Getting Thread and Process Information . 4-14

Starting Programs . 4-16

Debugging Programs . 4-16

16-Bit Functions with No 32-Bit Counterparts . 4-17

Semaphores . 4-17

Using Semaphores . 4-18

Signalling Events with Semaphores . 4-20

Using Event Semaphores Between 16- and 32-bit Code 4-21
Using Semaphores for Mutual Exclusion . 4-21

Using Semaphores for Multiple Waiting . 4-25

Contents V

Unnamed Pipes 0 4-26

Named Pipes 0 4-27
Queues 0 4-27
Timers 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 4-28

Dynamic Linking 0 4-28
Device 1/0 4-30
File Systems 0 4-30

Searching Directories 0 4-32

Querying File Mode 0 4-33
Querying System Information 0 4-33

Reading Asynchronously 0 4-33

Setting the File Mode . 0 • 0 0 0 4-33

Setting Available Number of File Handles 0 4-34

Writing Asynchronously 0 4-34

Message Retrieval 0 4-34

Code-Page Management 0 4-34

Session Management 0 ·o 0 0 0 0 0 0 4-35

Error Management 0 4-35

Signals 0 4-35

Exception Management 0 4-36

VDD Services 0 4-37

Support for 16-Bit Subsystems 0 4-37

Changes to Presentation Manager Services 0 4-37

Printing 0 4-38

Workplace 0 4-39

Customizing Help Information 0 4-40

32-Bit Migration 0 4-41
Standard Font-and File-Dialog Boxes 0 4-42

Window Controls 0 4-44

Notebook 0 4-44

Container 0 4-45

Value Set 0 4-48

Slider 4-49

Pop-Up Menus 0 4-51

Desktop Background 0 4-51

Hooks 0 4-51
Paths, Regions, and Bit Maps 0 4-51
Fonts and Characters 0 4-51

Polylines 0 4-52

Transformations 0 4-52

PM Helper Macros 0 4-52

Summary 0 4-54

Chapter 5. Dynamic Linking 0 ° 0 ° 0 0 0 ° 5-1

Static vso Dynamic Linking 0 5-1

Load-Time Dynamic Linking 0 ° 0 0 ° 0 0 0 ° 0 5-3

Run-Time Dynamic Linking 0 ° 0 0 0 0 0 ° 0 0 5-6

DLL Data 0 ° 0 0 0 0 0 0 0 0 5-7

DLLinitialization and Termination 0 ° 0 ° 0 0 0 0 0 0 0 5-9

Building DLLs 0 ° 0 0 0 0 ° 0 5-9

Vi Appl ication Design G uide

External Function References 0 ° 0 ° 5-10

Module-Definition Files 0 5-10

Import Libraries 0 5-10

Creating a Simple DLL 0 5-11
Importing DLL Functions 0 ° 0 0 0 0 0 0 0 0 0 5-12

Using an Import Library 0 ° 0 0 .o 0 0 0 0 0 0 5-12

Using Shared and Instance Data . 5-13
Creating an Initialization/Termination Function 5-13
Linking at Run Time . 5-18

Protected Memory Use . 5-19

DLL Side Effects . 5-22

Summary . 5-23

Chapter 6. Multiple Virtual DOS Sessions . 6-1

Overview . 6-1

Enhanced DOS Sessions . 6-1

Fast Mode Switching . 6-3

Multiple DOS Sessions . 6-5

DOS Settings . 6-5

Transfer of Data Between DOS Sessions . 6-6
Increased Available Memory . 6-6

Memory Extender Support . 6-6

Expanded Memory Specification . 6-6

Extended Memory Specification . 6-8

DOS Protect Mode Interface . 6-10

Inside Enhanced DOS Session 6-13
Virtual Device Helper Services . 6-13

The Virtual Device Driver Model . 6-14

Communication with OS/2 Processes . 6-17
Summary . 6-18

Chapter 7. Object-Oriented Programming Using SOM 7-1

Object-Oriented Programming . 7-1

Object-Oriented Programming Example 7-1

IBM System Object Model . 7-3

SOM Features .. 7-3

Encapsulation ... 7-3

Inheritance . 7-4

Polymorphism . 7-4

The SOM Run-Time Environment . 7-4

Creating SOM Classes . 7-6

Object Interface Definition Language . 7-6

Processing Class Definition Files 7-11
A Simple Class Implementation . 7-13

SOM Macros, Functions, and Data . 7-16

Class-Specific SOM Macros . 7-16

General SOM Macros and Functions . 7-18

Invoking Methods and Accessing Data . 7-20
A SOM Client Program 7-23

Inheritance and Polymorphism: Overriding Methods 7-24
Metaclasses . 7-28

Implied Metaclasses . 7-30

Building SOM Class Libraries . 7-32

SOM ANIMALS Sample Program in the OS/2 2.0 Toolkit 7-33

SOM ANIMALS Sample Program with Implied Metaclasses 7-33

Summary . 7-46

Chapter 8. Workplace Programming Interface . 8-1

CUA Guidelines for an Object-Oriented User Interface 8-1

Objects, Classes, Hierarchies, and Inheritance . 8-2

Views of Objects . 8-2

Classes of Objects . 8-3

Contents Vii

Object Relationships . 8-3

Interaction with Objects . 8-4

Designing an Object-Oriented User Interface . 8-4

Defining the Objects for a Software Model . 8-5

Determining Object Relationships and Behaviors 8-5
Determining the Necessary Views . 8-6

Determining the Action Choices 8-6

The OS/2 Object-Oriented User Interface: The Workplace Shell 8-6

The OS/2 2.0 Workplace Programming Interface 8-8
Designing Workplace Classes . 8-9

Settings-Notebook Methods . 8-10

Pop-Up Menus . 8-12

Object Information Methods . 8-22

Direct Manipulation Methods . 8-28

Save/Restore State Methods . 8-29

Object Usage Methods . 8-30

Setup/Cleanup Methods . 8-32

Workplace Class Methods: Implied Metaclasses 8-35

Creating a Workplace Object: The Car Object . 8-37

The Workplace Application Interface . 8-39

Object Class Functions . 8-40

Object Instance Functions . 8-41

REXX Utility Workplace Functions . 8-42

Installing a Workplace Object . 8-42

Object Installation Programs . 8-42

Object Installation Batch Files . 8-44

The Workplace Class List Object . 8-45

Programming Considerations for the Workplace 8-46
Summary . 8-48

Appendix A. Sample Programs Cross Index . A-1
Control Program Functions . A-1

Device Functions . A-5

Direct Manipulation Functions A-6

GPI Functions by Functional Area . A-7

Profile Functions . A-11

Window Functions by Functional Area A-12

Index X-1

Viii Application Design Guide

Figures

© Copyright IBM Corp. 1992

1 -1 .
1 -2.
1 -3.
1 -4.
1 -5.
2-1 .
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
3-1 .
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.

3-10 .
3-1 1 .
3-12.
3-1 3.
3-1 4.
3-1 5.
3-16.
3-17 .
3-1 8.
3-1 9.
3-20.
3-21 .
3-22.
3-23.
3-24.
3-25.
3-26.
3-27.
3-28.
3-29.
3-30.
3-31 .
3-32.
3-33.
3-34.
3-35.
3-36.

4-1 .
4-2.
4-3.

Multitasking Hierarchy . 1 -5
Windows on the Screen . 1 -1 4
Window Hierarchy . 1 -1 4
Standard Window . 1 - 1 7
Message-processing System . 1 -20
80386 General , Segment and Status Registers 2-2
Real Mode Addressing . 2-4
Protect Mode Addressing-Without Paging 2-5
Protect Mode Addressing-With Paging . 2-7
Virtual 8086 Environment-Memory Management 2-1 2
OS/2 2.0 P rocess Address Space 2-14
Mu ltip le Linear Address Space M anagement 2-1 6
Til ed Address Space Next t o LOT . 2-1 8
OS/2 2.0 Application Types . 3-1
PM Appl ication Template . 3-3
Bu i ld ing a Pure 1 6-Bit App l ication . 3-6
Building a Mixed 1 6-Bit Application . 3-7
Building a Pure 32-Bit Application 3-8
Bu i lding a Mixed 32-Bit Application . 3-9
Template for the OS2.H I nclude Fi l e . 3-1 0
Stack frame for VioXXX Example 3-1 2
1 6 to 32-Bit Application/Subsystem I nteractions 3-1 3
Thunk Models 3-1 3
Mapping the f lat Address Space Using GOT Selectors 3-1 5
1 6-Bit Address Space Mapped to the Flat Address Space 3-1 6
Using DosSeiToFiat 3-17
Using DosFiatToSel . 3-1 7
Data Item Spans 64K Tile Boundary . 3-18

Using _Far16 _Pascal to Declare a 1 6-Bit Function 3-1 9

Using _Seg1 6 to Declare 1 6-Bit Pointers . 3-19
Using the #pragma seg16 Directive . 3-20

Usi ng _Seg1 6 . 3-20

Using _Far16 i n a 32-Bit Module . 3-21

Passing Different Size Parameters . 3-21

Structure Alignment . 3-22

Example of a Packing Problem . 3-23

Another Packing Problem . 3-24

Encountering Al ignment P roblems . 3-24

An Array Structure E lement . 3-24

Al ign ing an Array of Structures . 3-25

Using the _Far16 _Pascal and _Seg1 6 Keywords 3-25

Another Example of Using _Far16 _Pascal and _Seg1 6 3-27

Using the Packing Pragma Convention . 3-28

Declaring a 16-Bit Function in 32-Bit Code 3-29

Creating a 1 6-Bit Window Fro m Within a 32-Bit Module 3-30

Pass ing a 16 : 16 Pointer as a Message Parameter 3-31

Mixed Model P rogramm i ng-WinSetWindowThunkProc() Function . . 3-31

Mixed Model Programm ing-Thunk P rocedu re 3-32

Cal l i ng 32-Bit Code from 1 6-Bit Code . 3-33

A l locating Memory 4-3
Freeing Memory . 4-4
Subal locating Memory . 4-6

ix

X Appl ication Design G u ide

4-4.

4-5.

4-6.

4-7.

4-8.

4-9.

4-10.

4-11.

4-12.

4-13.

4-14.

4-15.

4-16.

4-17.

4-18.

4-19.

4-20.

4-21.

4-22.

4-23.

Using Named Shared Memory 4-7
Giving Unnamed Shared Memory . 4-8
Getting Unnamed Shared Memory . 4-9
Generating Dynamic Code . 4-10
Getting Thread and Process Information 4-16
Using Event Semaphores-16-Bit Version 4-20
Using Event Semaphores-32-Bit Version 4-21
Using Semaphores for Mutual Exclusion-16-Bit Version 4-22
Using Semaphores for Mutual Exclusion-32-Bit Version 4-24
Using Semaphores for Multiple Waiting . 4-25
Using Resources . 4-30
32-Bit Code for Finding Directories . 4-32
Open Dialog . 4-42
SaveAs Dialog . 4-43
Font Dialog . 4-43

Notebook Control Window . 4-44

Control Window Classes, Styles, and Messages 4-44
Container Control Window . 4-46

Container Control Window Classes, Styles, and Messages 4-46
Value-Set Control . 4-48

4-24. Value-Set Control Window Classes, Styles, and Messages 4-48

4-25. Slider Control . 4-49

4-26. Slider Control Window Classes, Styles, and Messages 4-49
5-1. Static Linking 5-1

5-2. Dynamic Linking . 5-4

5-3. Resolving Dynamic Link References . 5-5

5-4. DLL Data . 5-8
5-5. Specifying when to Execute the Initialization and Termination Function 5-9
5-6. A Simple DLL 5-11

5-7. Module-Definition File for Simple DLL . 5-11
5-8. Compiling and Linking a Simple DLL 5-11

5-9. Using a Simple DLL . 5-12

5-10. DEF File for Application Using a DLL . 5-12
5-11. Compiling and Linking an Application 5-12

5-12. Creating an Import Library 5-12

5-13. Linking with an Import Library 5-13

5-14. Specifying Data Segments with Different Attributes 5-13

5-15. Prototype for the _DLL_InitTerm Function 5-14

5-16. Prototype for the _CRT_init Function 5-14

5-17. Prototype for the _CRT_term Function 5-14

5-18. Specifying the System Linkage 5-14

5-19. A DLL Initialization Function Entry Point 5-15
5-20. A DLL Initialization Function . 5-15

5-21. Using A Runtime Dynamic-Linked Library 5-19

5-22. A 32-Bit DLL . 5-20

5-23. Enabling Memory Protection for DLLs . 5-20

5-24. Accessing Protected DLL Data . 5-21

5-25. Using the PROTECT16 Parameter . 5-22

6-1. Enhanced DOS Session System Structure and Control Flow 6-3

6-2. Loading VEMM . 6-7

6-3. Memory Map of Areas Supported by Extended Memory 6-8

6-4. Loading VXMS . 6-9

6-5. Loading DPMI 6-12

6-6. Structure of Virtual and Physical Device Drivers 6-14

6-7. Physical and Virtual Device Drivers Under OS/2 2.0 6-16
7-1. GenericStack Functions inC 7-2

7-2.

7-3.

7-4.

7-5.

7-6.

7-7.

7-8.

7-9.

7-10.

7-11.

7-12.

7-13.

Using Generic Stack Functions inC 7-2

Polymorphism by Inheritance 7-4

Classes and Metaclasses 7-5

SOM Objects at Initialization 7-5
Class Definition File Template . 7-7
Structure of a Sample Class Definition File 7-9
Maintaining Compatibility by Modifying the Release Order 7-10
Syntax of OIDL Comments 7-11

Processing a Class Definition File 7-11

(SOM) Compiling .SC Files . 7-12

Class Definition File 7-13

C-Language Source-Program Template for Implementation of Dog

Class . 7-14

7-14. General Form for a Method Stub . 7-14

7-15. Prototype of Method with Parameters . 7-14

7-16. Stub of Method with Parameters . 7-14

7-17.

7-18.

7-19.

7-20.

7-21.

7-22.

7-23.

7-24.

7-25.

7-26.

7-27.

7-28.

7-29.

7-30.

7-31.

7-32.

7-33.

7-34.

7-35.

7-36.
7-37.
7-38.

7-39.

7-40.

7-41.

7-42.

7-43.

7-44.

7-45.

7-46.
7-47.

7-48.

7-49.

7-50.

7-51.

8-1.

8-2.

8-3.

8-4.

8-5.

Suppressing SOM Tracing . 7-15

C-language Source Program for Implementation of Dog Class 7-15

Underscored-Data-Name macro . 7-16

Underscored-Method-Name macro . 7-17

Invoking Methods with Identical Names but Nonrelated Classes 7-17

Replacing SOM Functions . 7-20

Invoking Methods and Accessing Data in a New Dog Class (DOG.CSC) 7-21

Implementation of a New Dog Class (DOG.C) 7-22

Client of the New Dog Class . 7-23

Defining an Object . 7-23

Output from Client of Dog Class . 7-24

Inheritance Relationships Between Classes and Subclasses 7-24
LDOG.CSC-LittleDog Class Definition File 7-25

BDOG.CSC-BigDog Class Definition File 7-25

LDOG.C-LittleDog Class Implementation 7-25

BDOG.C-BigDog Class Implementation 7-26

Client of Dog, BigDog, and LittleDog Classes 7-27

Output from Client of Dog, BigDog, and LittleDog Classes 7-27

DOGMETA.CSC-Ciass Definition for Metaclass of Dog Class 7-28

DOGMETA.C-Implementation of DogMeta Class 7-28

DOG.CSC-Associating a Metaclass with a Class 7-29
Client of Dog and DogMeta Classes . 7-29

DOG.CSC-Implied Metaclass for the Dog Class 7-30
Implementation of an Implied Metaclass for the Dog Class 7-31

A Client of the Dog Class with an Implied Metaclass 7-32

Class Relationships in ANIMALS Sample Program 7-33

ANIMAL.CSC-ANIMALS with Implied Metaclasses 7-34

ANIMAL.C-ANIMALS with Implied Metaclasses 7-35

DOG.CSC-ANIMALS with Implied Metaclasses 7-38

DOG.C-ANIMALS with Implied Metaclasses 7-39

BDOG.CSC-ANIMALS with Implied Metaclasses 7-42

BDOG.C- ANIMALS with Implied Metaclasses 7-43

LDOG.CSC-ANIMALS with Implied Metaclasses 7-43

LDOG.C-ANIMALS with Implied Metaclasses 7-43

MAIN.C-Ciient of ANIMALS with Implied Metaclasses 7-44
Objects in a Folder . 8-7

Workplace Object Class Hierarchy . 8-8

Adding Pages to an Object's Settings Notebook 8-10

Adding Pages to an Object's Settings Notebook 8-11

Removing a Page from an Object's Settings Notebook 8-12

Figures Xi

8-6.

8-7.

8-8.

8-9.

8-10.

8-11.

8-12.

8-13.

8-14.

8-15.

8-16.

8-17.

8-18.

8-19.

8-20.

8-21.

8-22.

8-23.

8-24.

8-25.

8-26.

8-27.

8-28.

8-29.

8-30.

8-31.
8-32.

Xii Application Design Guide

Pop-Up and Conditional Cascade Menus 8-12
Removing Standard Items from an Object's Pop-Up Menu 8-14

Flags for Standard Pop-Up Menu Items Defined by Other Workplace

Classes . 8-14

Resource File Defining New Items for Object's Pop-Up Menu 8-15

IDs for Standard Items in a Pop-Up Menu 8-15

Adding Class-Specific Items to an Object's Pop-Up Menu 8-16

Adding an Item to a Pop-Up Menu Submenu 8-16

Removing Class-Specific Items from a Pop-Up Menu 8-17
Conditional Cascaded Menus . 8-17

Resource File Defining Pulldown for Object's Pop-Up Menu 8-18

Creating a Conditional Cascaded Menu for a Pop-Up Menu Item . . . 8-18

Supporting User Selection of New Pop-Up Menu Items 8-19

Details View for a Workplace Class . 8-23

A Details Record for an Object . 8-24

Format for Items in a Details Record for an Object 8-24

Defining a Structure for CAR Details . 8-24

Initializing CLASSFIELDINFO Structures for CAR Details 8-25

Defining Format of Details Data . 8-27

Appending Details Data to end of Object's Details Record 8-28

Data Structures for Object In-Use Items 8-31

Example of Object Setup String . 8-34

Processing KEYNAMES for a Class . 8-35

Changing Existing Objects on the Desktop 8-41

REXX Batch File to List all Classes Registered With Workplace 8-42
Installation Program for Workplace Object 8-43

REXX Batch File for Installing Workplace Objects 8-45

.ASSOCTABLE Extended Attributes . 8-46

.�. Tables

© Copyright IBM Corp. 1 992

1-1 . OS/2 Function Groups . 1-29

3-1. OS/2 2.0 Application Types 3-2
3-2. OS/2 Version 2.0 Programming Models . 3-5
3-3. WORD/DWORD Alignment 3-23

4-1. 16-Bit to 32-Bit Memory-Management Functions 4-2

4-2. 16-Bit and 32-Bit DosSubSetMem . 4-5

4-3. 16-Bit to 32-Bit Tasking Functions . 4-12

4-4. 16-Bit to 32-Bit Semaphore Functions . 4-19

4-5. 16-Bit to 32-Bit Named-Pipe Functions . 4-27

4-6. 16-Bit to 32-Bit Queue Functions . 4-28

4-7. 16-Bit to 32-Bit Timer Functions . 4-28

4-8. 16-Bit to 32-Bit Dynamic-Linking Functions 4-29

4-9. 16-Bit to 32-Bit Device 1/0 Functions . 4-30
4-10.

4-11.

4-12.

4-1 3.

4-14.

4-15.

4-16.

4-17.

4-18.

4-19.

4-20.

4-21.

4-22.

4-23.

4-24.

4-25.

4-26.

4-27.

5-1.

6-1.

6-2.

7-1.

7-2.

7-3.

7-4.

7-5.

7-6.

7-7.

7-8.

7-9.

7-10.

8-1.

8-2.
8-3.

8-4.

8-5.

8-6.

8-7.

8-8.

16-Bit to 32-Bit File-System Functions . 4-31

1 6-Bit to 32-Bit Message-Retrieval Functions 4-34

16-Bit to 32-Bit Code-Page Management Functions 4-34

16-Bit to 32-Bit Session-Management Functions 4-35

16-bit to 32-bit Error Management Functions 4-35

16-Bit to 32-Bit Exception-Management Functions 4-36

32-Bit VDD Services . 4-37

Version 2.0 Print Functions . 4-39

OS/2 2.0 Workplace Functions . 4-40

New IPF Tags . 4-41

Version 2.0 DDF Functions . 4-41

Version 2.0 Migration Functions . 4-42
Font and File Dialog Functions . 4-43

Path, Region, and Bit Map Functions . 4-51

Font and Character Functions . 4-52

Polyline Functions . 4-52

Transformation Functions . 4-52

PM Helper Macros . 4-53

Why Static Linking? 5-2

OS/2 2.0 Virtual Device Drivers . 6-15

VDD Services . 6-17

SCM-Supplied Classes . 7-5

SOM C-Language Bindings Files . 7-12

SOM Environment Variables . 7-13

SOM Naming Conventions 7-16

Class-Specific Macros . 7-17

Macros and Functions for Manipulating SOM IDs 7-18

SOM Debug Macros and Control Variables 7-18

SOM Error Severity Levels . 7-19

Replaceable SOM Functions . 7-19

Summary of SOM and Object-Oriented Programming Terminology . . 7-46

Some Workplace Objects Provided by OS/2 2.0 8-7

Workplace Storage Classes . 8-9

Defining Methods for the WPObject Class . 8-9
Settings Notebook Methods 8-11

Pop-Up Menu M ethods to Modify an Obj ect's Pop-up Menu 8-13
Flags for Standard Pop-Up Menu Items Inherited from WPObject . . . 8-13

Pop-Up Menu Methods that Support New Pop-Up Menu Items 8-19
Pop-Up Menu Methods Supporting Standard Pop-Up Menu Items . . . 8-20

xii i

8-9. Predefi ned Open Views for Workplace Objects

8-10. Object I nformation Methods

8-1 1 . Object Class Styles

8-12. OM Notifications from the Shel l to Target Objects and to Wi ndows ..
8•13. Save/Restore the Object's State Methods

8'"14. Object Usage Methods

8-15. Types of I n-Use Items for Objects

8-1 6. Setup/Cleanup Methods
8-17. WPObject KEYNAMES and Values

8-18. Some WPObject Class Methods

8-19. Default C lass Styles for Objects
8-20. New Methods for CAR Class

8-21. Workplace API . .

8-22. Object IDs for Predefi ned System Folders
8-23. REXX Uti l i ty Workplace Functions

8-24. Summary of Workplace Terms

XiV Appl ication Design Guide

8-20

8-22 �

8-22

8-29

8-29

8-30

8-30

8-32
8-32

8-36

8-36

8-37

8-40

8-41
8-42

8-48

�

Notices

References in this publ ication to IBM products, programs, or services do not i m ply
that IBM i ntends to make these avai lable in all countries in which IBM operates.
Any reference to an IBM product, program or service is not i ntended to state or
i m ply that only I BM's product, program, or service may be used. Any functional ly
equivalent product, program , or service that does not i nfr inge any of IBM's
i ntel lectual property r ights or other legal ly protecti b le r ights may be used i nstead of
the IBM product, program, or service. Eval uation and verification of operation i n
conj unction with other products, programs, o r services, except those expressly
designated by IBM , are the user's responsi bi l i ty.

IBM may have patents or pend ing patent appl ications covering subject matter in this
document. The furn ish ing of this document does not g ive you any l i cense to these
patents. You can send l i cense i nqui ries, in writ i ng , to the IBM Di rector of
Commercial Relations, I B M Corporat ion, Purchase, NY 1 0577.

Trademarks and Service Marks

© Copyright IBM Corp. 1 992

The fol lowi ng terms, denoted by an asterisk (*) , used i n this publ ication, are
trademarks or service marks of the I B M Corporation in the United States or other
countries:

C/2
C Set/2
Common User Access
CUA
I B M
Operati ng System/2
OS/2
Personal System/2
Presentation Manager
PS/2
SAA
Systems Appl i cation Arch itecture

The fol lowi ng terms, denoted by a double-asterisk (**) used i n this publ ication , are
trademarks of other companies as fol lows:

I ntel
Windows
M icrosoft
Lotus
1 23
Wi ndows/286
Helvet ica
Courier

I ntel Corporation
M icrosoft Corporation
Microsoft Corporation
Lotus Development Corporation
Lotus Development Corporation
M icrosoft Corporation
Linotype Company
Li notype Company

XV

Double-Byte Character Set (DBCS)
Throughout this publication, you will see reference to specific values for character
strings. The values are for s ingle-byte character set (SBCS). If you use the
double-byte character set (DBCS), note that one DBCS character equals two SBCS
characters.

XVi Application Design Guide

�. About This Book

This book is a companion to the OS/2 Programming Guide, Volumes 1-1 1 1 . It
describes specific aspects of programming in the OS/2 2.0 environment. The topics
in this book reflect the flexibility of OS/2 2.0.

Who Should Read This Book

This book is intended for the professional programmer with some knowledge of the
C programming language. It is intended for the new OS/2 programmer migrating
from DOS or Windows, as wel l as for the experienced OS/2 programmer migrating
from the 1 6-bit environment.

How This Book is Organized

© Copyright IBM Corp. 1 992

Chapter 1 , " OS/2 2.0 Overview" describes the highlights of OS/2 2.0, the benefits of
OS/2 2.0 and Presentation Manager, the fundamental concepts of the base operating
system , or Control Program , and the fundamental concepts of Presentation
Manager.

Chapter 2, "The 32-bit OS/2 Programming Environment" describes the 80386
architecture and the OS/2 utilization of the 80386.

Chapter 3, "The Appl ication Development Environment" describes the type of
applications that can run under OS/2 2.0, the programming models for OS/2 2.0
applications, the OS/2 2.0 program development environment, and migration issues.

Chapter 4, "Comparison of 1 6-Bit and 32-Bit OS/2 Functions" describes the
differences between the 1 6-bit and 32-bit OS/2 functions for the Control Program and
Presentation Manager.

Chapter 5, " Dynamic Linking" describes static and dynamic linking , DLL data, DLL
initialization and termination, building a DLL, and protected DLLs.

Chapter 6, " Mu ltiple Virtual DOS Sessions" describes the differences between the
real mode OS/2 DOS Box and Enhanced DOS Session , how 110 devices are
virtualized by OS/2 virtual device drivers, how Enhanced DOS Session takes
advantage of the f lat memory model , and how Enhanced DOS Session provides
com patibility for DOS applications.

Chapter 7, "Object-Oriented Programming Using SOM " describes the IBM System
Object Model environment.

Chapter 8, "Workplace Program ming I nterface" describes the OS/2 2.0 Workplace
Programming I nterface.

Appendix A, "Sample Programs Cross I ndex" shows the OS/2 API functions, and
the sample programs that demostrate their use.

xvii

OS/2 2.0 Technical Library

Appl i cati on
Desi gn
Gui de

Programmi ng
Gui de

Vol ume I

'- Programmi ng
Gui de

Vol ume I I

'- Programmi ng
Gui de

Vol ume I I I

Procedures
Language 2/
REXX
User ' s Gui de

XVii i Appl ication Design Guide

Dri ver
Devel opment
Publ i cati ons

Procedures
Language 2/
REXX
Reference

Control
Program
Programmi ng
Reference

System
Obj ect
Model
Gui de and
Reference

I nformati on
Presentati on
Faci l i ty
Gui de and
Reference

Physi cal
Devi ce
Dri ver
Reference

Presentat i on
Manager
Programmi ng
Reference

Vol ume I

Presentati on
Manager
Programmi ng
Reference

Vol ume I I

Presentat i on
Manager
Programmi ng
Reference

Vol ume I I I

These publ i cati ons are
al so avai l abl e onl i ne .

Vi rtual
Devi ce
Dri ver
Reference

SAA CUA
Gui de to
User
I nterface
Desi gn

Presentat i on
Dri ver
Reference

SAA CUA
Advanced
Interface
Desi gn
Reference

·�.

Chapter 1 . OS/2 2.0 Overview

This chapter describes:

• High l ights of OS/2* 2.0·
• Benefits of OS/2 2.0 and the Presentation Manager· (PM) program
• Concepts of the base operating system
• Concepts of PM
• Concepts of the Graphics Programm i ng I nterface

OS/2 2.0 Highlights

386 Features

Portability

© Copyright IBM Corp. 1 992

OS/2 2.0 is an advanced mu ltitasking, single-user operating system for personal
computers. L ike previous versions of the operating system, OS/2 2.0 provides an
appl ication programming i nterface (API) that supports multitasking, multip le
threads, dynamic l i nking , i nterprocess communication, a graphical user i nterface,
and a graphics programming i nterface. Features avai lable in previous versions of
the operat ing system, such as a h igh-performance fi le system, extended me
attributes, and long fi le names, also are avai lable in OS/2 2.0.

New features of OS/2 2.0 i ncl ude:
• Ful l use of the the Intel** 80386 processor features, such as f lat memory

model i ng, paged virtual memory, and enhanced i nstruction set
• Portabi l ity between different process ing platforms
• Ful l compatib i l ity with Version 1 .X
• Execution of m ultiple DOS sessions
• Vi rtual device drivers for supporting virtual devices to the DOS environment

Un l ike previous versions of the operating system, OS/2 2.0 takes advantage of
features of the I ntel 80386 processor, such as the flat memory model , paged virtual
memory, and enhanced i nstruction set. This means that OS/2 appl ications do not
man ipu late selectors and offsets as they do in the segment memory model of
previous versions of the operating system . I nstead, OS/2 2.0 appl ications view
memory as a large, l i near, address space addressable by 32-bit offsets from the
beg inn ing of memory. Paged vi rtual memory means that memory is managed more
efficiently, and the enhanced i nstruction set lets the appl ication handle 32-bit values
i n s ingle i nstructions.

A benefit of the f lat memory architecture of OS/2 2.0 is appl ication and
operating-system portabi l ity. Programs written for other operating systems that use
a 32-bit, li near (flat) memory model are easi ly portable to OS/2 2.0. OS/2
appl ications thatuse the l inear memory model wi l l also be easi ly portable to future
versions of OS/2 2.0 (and other operat ing systems) that run under other
m icroprocessors. The flat model architecture is easily portable to most processing

1 -1

platforms, because hardware m ust provide only a base register capable of
addressing a large-paged l i near address space and an offset register for i ndexi ng
i nto the address space. OS/2 2.0 was not designed to be 386-specific, but rather a
32-bit OS/2 operati ng system i m plemented on the 80386 p latform.

Compatibil ity with Version 1 .X
OS/2 2.0 requ ires the features of the 80386; it does not run on com puters that use
the I ntel 80286 processor. This means that appl ications developed for OS/2 2.0
cannot run under Version 1 .X of the operating system. However, appl ications
developed for Version 1 .X can run under OS/2 2.0, although they won't be able to
take advantage of the fu l l features and performance of the operat ing system .

Although OS/2 2 . 0 provides a complete set of 32-bit functions, the operating system
supports cal ls to 1 6-bit functions. This means that some 32-bit functions are
converted by the system to 1 6-bit functions. The code that does the converti ng is
cal led the thunk layer. The thunk layer converts 32-bit parameters to 1 6-bits, and
maps l i near addresses to segmented addresses. The functions of the thunk layer �

are transparent to app l ication developers, and should be of no concern un less you
want to develop your own thunk layer for 1 6-bit dynamic l i nk l i brar ies (Dlls) that
are cal led by 32-bit and 1 6-bit appl ications.

Multiple DOS Sessions
The 80386 processor makes it possib le for OS/2 2.0 to manage more than one DOS
appl ication at a ti me. In the vi rtual 8086 mode of processor, each DOS appl ication
runs i n its own copy of a DOS envi ronment. This feature of OS/2 2.0 is referred to as
Enhanced DOS Session. �

Virtual Device Drivers
The DOS environment in OS/2 2.0 provides an extendable architecture that al lows
the DOS envi ronment to be tai lored. At the heart of this extendib i l ity is the vi rtual
device d river architecture. All of the low-level DOS support, which i n previous
versions of the OS/2 2.0 resided in physical device drivers, has been moved i nto
vi rtual device d rivers. Because of the vi rtual 8086 mode, al l i nterrupt processing is
done i n protect mode. B imodal device drivers are no longer needed. The new
driver architecture provides physical device drivers for basic device support and �

vi rtual device drivers for supporti ng vi rtual devices to the DOS envi ronments.
Conceptual ly, a virtual device d river provides the mechanism for sharing a physical
device between OS/2 protect-mode appl ications and DOS appl ications.

The OS/2 Operating System and Presentation Manager Program

In a multitaski ng envi ronment, it is i mportant that all appl ications have some portion
of the screen through which to i nteract with the user. One of the pri nci pal goals of
OS/2 2.0 is to provide visual access to most, if not al l app l ications at the same t ime.
This access can be granted by giving selected appl ications fu l l use of the screen
whi le others wait in the background, or by letti ng appl ications share the screen. I n
OS/2 2.0, t he session i n which the appl ication runs dictates whether the appl ication
receives complete control of the screen or m ust share it with other app l ications.

Dependi ng on the appl ication type, the system can start an appl ication in a

fu l l-screen session. An app l ication runni ng i n a fu l l-screen session has complete

control of the screen . Appl ications that have complete control of the screen are

cal led full-screen applications.

1 -2 Appl ication Design G uide

Queued Input

When the operat ing system fi rst starts, it creates the PM session. PM manages this
session, as wel l as the screen, keyboard, and mouse resources used by
appl ications running in this session. Appl ications running in a PM session are
cal led PM applications. PM appl ications share the screen, keyboard, and mouse
resources with other PM appl ications.

Each PM appl ication is a l located a portion of the screen , cal led a window. PM
appl ications al low m ulti p le windows to be displayed on the screen at a ti me. I n this
way, PM appl i cations share the screen.

A wi ndow is the user i nterface for an appl ication. It can contain menus, scro l l bars,
and other controls through which the user communicates with the appl ication.

A PM appl ication m ust create its own window before producing any output or
receivi ng any i nput. The operating system provides the appl ication with deta i led
i nformation about what the user is doing with the wi ndow and automatical ly carries
out m any of the tasks the user requests, such as moving and sizi ng the wi ndow.

A PM appl ication can create and use any number of wi ndows to display i nformation
in a variety of ways. PM manages the screen, control l i ng the placement and display
of windows, and ensuring that no two appl ications attempt to access the same part
of the screen at the same t ime. (In such a case, PM overlaps the wi ndow of one
appl ication with the wi ndow of the other.)

I n traditional programm i ng envi ronments, an appl ication reads from the keyboard
by making an expl icit cal l to a function (GETCHAR, for exam ple) . The function
typical ly waits unti l the user presses a key before returning the character code to
the appl ication. A PM appl ication does not make expl icit cal ls to read from the
keyboard. I nstead, the operat ing system receives all i nput from the keyboard,
mouse, and ti mer i nto the system queue. Each i nput is then redi rected to the
appl ication by copying i t from the system queue to the appl ication queue. When the
appl ication reads the i nput, the next i n put is redi rected to the appl ication queue, and
so on. As the app l ication reads each i nput, it d ispatches messages to the
appropriate windows.

In a PM appl ication , i nput from the keyboard and mouse is provided automatical ly to
every wi ndow that is created. The operat ing system provides i nput in a uniform
format cal led an i nput message. The message contai ns i nformation about the i nput
that far exceeds the i nformation avai lable in other envi ronments. It specifies the
system time, the position of the mouse, the state of the keyboard , the scan code of
the key (if a key is pressed) , the number of the mouse button (if a button is pressed) ,
and the device that generated the message. For example, the keyboard message
WM_CHAR corresponds to the pressing or releasing of a specific key. In each
m essage, the operati ng system provides a device-i ndependent vi rtual-key code that
identif ies the key, i n addit ion to the device-dependent scan code generated by the
keyboard. The message also specifies the status of other keys on the keyboard,
such as SHIFT, CTRL, and NUMLOCK. Keyboard, mouse, and t imer messages a l l
have the same format and are processed i n the same manner.

Chapter 1 . OS/2 2.0 Overview 1 ·3

Device-Independent Graphics
In PM operations, you have access to a set of device-independent g raphics
operations. This means that your appl ications can easi ly draw simple or complex
shapes; they can make the same calls and use the same data to draw a
h igh-resol ution graphics display that they would use to draw on a dot-matrix printer.

The operating system requi res presentation drivers to convert graphics-output
requests to output for a printer, p lotter, display, or other output device. A
presentation driver is an executable l ibrary that is loaded by PM and is used to
carry out graphics operations i n the context of the specific device; that is, the device
driver, the output device, and the communications port.

Shared Resources
OS/2 2.0, a multitasking system, requ i res that PM appl ications must share the
display, the keyboard, the mouse, and even the processor, with al l other
applications that are currently runn ing in the same session, or in other sessions.
For th is reason, the operating system careful ly controls these resources and
requ i res appl ications to use a specific programm i ng i nterface that guarantees this
control .

Control Program Fundamentals

Multitasking

The control program consists of al l the OS/2 functions that are used to create
processes and threads, access disk files and devices, al locate memory, and retrieve
or set i nformation about the system . In PM appl ications, these functions typical ly
are used to carry out tasks for which no corresponding window-manager or graphics
programming i nterface function exists. Ful l -screen appl ications almost exclusively
use these functions, even to i nteract with the user and access the devices of the
computer.

Multitasking, one of the principal features of OS/2 2.0, is the abi l ity of the system to
manage the execution of more than one appl i cation at a t ime. This abi l ity helps to
optim ize use of the computer, because time normal ly spent by an appl ication
waiti ng for user i nput is distributed to other appl ications that might be printi ng a
document or recalculat ing a spreadsheet.

OS/2 2.0 supports two types of multitasking. The fi rst type enables an appl ication to
start other programs, i n separate processes, that wi l l execute concurrently with the
appl ication. These programs can be a new copy of the appl ication, a related
program that is designed to work with the appl ication, or an unrelated program. The
second type of multitasking enables appl ications to run mu lt ip le threads of
execution with in the same process; separate activities can be multitasked with i n the
appl ication.

Although al l the appl ications appear to the user to be runn ing s imultaneously, the
processor actual ly can perform only one task at a t ime. The processor often must
wait for i nput or output from a relatively slow device, such as the keyboard or d isk.
Whi le the processor is waiting, another task can be run.

1 -4 Application Design Guide

An appl ication often has to perform mult ip le tasks that can be synchronized. To
make efficient use of the processor, an appl ication can be structured to a l low one
piece of work to be executed whi le another is waiti ng for something to happen. The
appl ication can be written so that it can be executed with other app l ications of which
it has no knowledge.

The operati ng system manages the concurrent processing of appl ications by making
certa in that computer resources are so a l located that one appl ication does not
i nterfere with another. However, to share the OS/2 envi ronment, the appl ication
m ust plan and synchronize execution of i ts routi nes.

To co-exist harmoniously in the m ultitaski ng envi ronment, each appl ication m ust be
able to comm unicate with other appl ications, to synchronize its activit ies, and to
seria l ize its use of resources. It must be able to start, stop, and control its units of
execution.

The operating system hel ps to control the m ultitaski ng envi ronment on three levels:
sessions, processes, and threads. This three-tier h ierarchy addresses both the
user's need to control concurrent execution, and the developer's need to design
appl ications whose activities can be performed concurrently.

F igure 1 -1 i l l ustrates the h ierarchical relationships of the m ultitasking elements.

SESSIONS

Figure 1-1 . Multitasking Hierarchy

Sessions
A session is the highest level of the OS/2 m ultitasking h ierarchy. It consists of
vi rtual/logical devices, such as the screen (or a wi ndow) , keyboard, and mouse, and
thei r related processes. Logical devices are mapped to these physical devices
when the user selects a session by bri nging it to the foreground to perform 1/0.
General ly, each appl ication runs in its own session. However, more than one
appl ication in the PM session can share the physical screen, keyboard and mouse.

Chapter 1. OS/2 2.0 Overview 1 -5

Sessions can be arranged i n a parent-chi ld h ierarchy. By default, a parent session
can make a chi ld session avai lable for the user to select from the Workplace Shel l .
A session can start another i ndependent session. I n th is case, the starti ng session
cannot control whether the user can select the second session. If a session is
runn ing in the foreground, it can bring any of its chi ld sessions to the foreground. A
parent session can end its own chi ld sessions, but cannot end thei r descendants.
However, if a chi ld session is ended, the operati ng system automatical ly ends the
related descendant sessions.

Processes
A process is the logical unit of resources al located to run an appl ication. These
resources i nclude memory, fi les, pipes, queues, system semaphores, and device
monitors. Each appl ication that has been loaded i nto memory and is runni ng is
cal led a process. Each session contains at least one process.

One process can create other processes, which are arranged i n parent-chi ld
relationships sim i lar to sessions. A child process created by a parent process may
i nherit access to the handles to fi les, pipes, and devices owned by the parent
process. The parent process retains control of its chi ld processes and any other
processes cal led i n the l i ne of descendancy. A process can control the execution of
its ch i ld processes, and can end itself and its chi ld processes.

A process can give control to a set of routines that are to be executed when the
process ends. The routines, cal led exit lists, free al located resources and perform
"general housekeeping" after a normal or abnormal end.

Threads
The smal lest unit of operation to be performed with in a process is cal led a thread.
A thread consists of i nstructions, related CPU register values, and a stack. A
process always has at least one thread, cal led the main thread or thread 1 , and can
create more threads. These additional threads are useful for carrying out tasks
unrelated to the processing of the main thread. For example, a process might
create a thread to write data to a disk fi le. This frees the main thread so that it can
cont inue to process user i nput. A thread does not own system resources but shares
the resources owned by the process that created it. An appl ication runs when the
operating system gives control to a thread in the process. Threads are not
organized hierarchical ly. Each thread with in a process is a peer with the other
th reads with in the process.

Usi ng the API functions, a thread can start other threads with in a process. A thread
also can temporari ly suspend and resume execution of other threads. This can
enable the thread to access a time-critical resource. Although all threads i n a
process are considered to be peers, if the fi rst thread i n a process ends, al l other
threads it created also end. It is necessary to have a thread issue an API function to
end itself when it completes its execution.

Dispatching Priority: The operating system assigns each thread a dispatching

priority, unless one is expl i citly defi ned by the API function. Processor time is
al located to only one thread at a t ime. The operating system uses time slicing to
ensure that threads of equal priority are given equal chances for execution. The
operat ing system can preempt a thread when its time s l ice expi res or if a thread
with a h igher or equal priority is ready for execution. The default m in imum time
s l ice is 32 m i l l iseconds. OS/2 t imer services, accessed through the API , support al l
t imer-related activities, i ncluding synchronizi ng the activities of threads.

1 -6 Application Design Guide

Dynamic Linking

When a thread is created, its priority class, and priority level with in the class, are
the same as that of the thread that created it. The API g ives the app l ication the
abi l ity to query or change a thread's priority class and level . The priority classes
are time-critical, fixed-high, regular, and idle-time. For each of these classes, there
are 32 priority levels: 0 to 31 . A thread with priority level 31 always receives a t ime
s lice before a thread with priori ty l evel 30, and so on. Threads are d ispatched as
fol lows:
Priority class

Time critical

Fixed high

Regular

Idle-time

When the thread is dispatched

I mmediately and continuously from withi n the priority l evel.
(These threads handle communications or real -time
appl ications.)
When no time-critical threads are waiting.
Based on display status (background or foreground), recent
110 activity, and processor use. Most threads are classified
with regular priority.
When no regular, f ixed-high, or t ime-critical threads are
waiting.

Although an appl i cation can set the priority l evel of a thread at any t ime, only
appl ications that use more than one thread or process should do so. The best use
of priority is to speed up threads on which other threads depend. For example, an
appl ication m ight temporari ly raise the priority of a thread loading a fi le if another
thread is wait ing for that fi l e to be loaded. Because the priority of a thread is
relative to al l other threads in the system , raising the priority of the threads in an
appl i cation merely to get the extra CPU time adversely affects the overal l operation
of the system .

Dynamic l inki ng enables a n appl ication to gain access at run t ime to functions that
are not part of its executable code. These functions are contained i n dynamic l i nk
l ibraries (DLLs)-modul es that conta in executable code but cannot be run as
appl ications. I nstead, appl ications l oad the appropriate Dlls and execute the code
i n the l i braries by l inking to them dynamical ly.

Dlls are very com mon in OS/2 2.0. In fact, most of the operating system is
contained in them. The chief advantage of Dlls is that they reduce the amount of
memory needed by an appl ication. An app l ication loads a DLL only if it needs to
execute a function i n the DLL. Once the DLL is l oaded, the system also shares it
with any other appl i cations that need it. This means that only one copy of the DLL is
l oaded at any one time.

Memory Management
Al l 32-bit appl i cations can, at any time, al locate additional memory for thei r own
use. In Version 1 .X of the operating system, app l ications request memory by
segments. A segment is a unit of virtual and physical memory al location based on
the I ntel 286 processor architecture. I n OS/2 2.0, appl ications request memory by
object. An object is the unit of memory a l location i n a 32-bit, f lat architecture.

An memory object is al located in units of 4KB. One 4KB un it is cal led a page. Each
page with in a memory object can be in one of two states, either uncommitted (that
is, the l inear address range has been reserved, but is not yet backed by physical
storage) or committed (physical storage as been al l otted for the logical address
range) .

Chapter 1 . OS/2 2.0 Overview 1 -7

The Fi le System

In OS/2 2.0, code and data requ i red for relatively immediate processor execution is
kept i n physical memory. Code and data which is not requi red for immediate �.

processor execution is kept on external storage devices (swap space) .

Functions that a l locate memory return 32-bit poi nters to memory objects rang ing i n
size from 1 page (page = 4KB) to any size supported by avai lable swap space. A l l
poi nter references are 32-bit near pointers. No segment register loads are i nvolved;
thus all of the segment reg isters are equal : CS = OS = SS = ES. Vi rtual memory
works by demand pag ing , rather than by compaction and segment swapping. This
has i mportant impl ications for sizing memory objects in order to gain optimum
system performance. A l l memory al locations, whether private or shared, are
guaranteed to fi l l comm itted pages with zeros. Appl ication developers can rely on
this fact when determ i ning the i nit ial contents of memory.

OS/2 2.0 protects memory from unauthorized use. The process that al locates
memory owns that memory, and no other process can access it. Attem pting to
access memory owned by another process causes a protection violation and usual ly
ends the process.

If two processes need to share memory, one can create a shared memory object
and either pass the pointer to the process that is to share the memory, or pass the
name of the shared memory to that process. The shari ng processes m ust manage
the shared memory.

The OS/2 fi le system enables an appl ication to organize and mai ntai n data on
external devices, and provides a logical view of the storage media. This enables
appl ications to manipu late data without havi ng to be fam i l iar with the characteristics
of each device.

The operati ng system has two fi le systems: the file allocation table (FAT) fi le system
and the High Performance File System (HPFS). The FAT fi le system is the default
fi l e system for the operating system , and does not need to be i nsta l led. HPFS can
be i nstal led dur ing system in it ial ization. HPFS manages large disk media in a fast
and consistent manner and supports fi les with the long fi le-name format.

The fi le system is arranged in a h ierarchy on the physical d isk. This d i.sk can be
subdivided i nto two or more logical d isks, or partitions, each with its own h ierarchy.

The basic element in the fi l e system is the file itself. A f i le represents a serial
stream of characters. A h ierarchical col lection of fi les is cal led a directory. A
di rectory h ierarchy contai ns at least one root directory at the top of the h ierarchy on
each logical disk. Di rectories also can conta in other d i rectories, cal led
subdirectories, which are col lections of fi l es at a lower h ierarchical level . Using
di rectories and subdi rectories, an appl ication can organize the contents of a disk
i nto logical g roups of fi les.

The operat ing system provides API functions to enable the appl ication to create,
open, read, write, and close fi les, and to create and delete subdi rectories. Once a
fi le is opened, it is assigned an identifier cal led a file handle, which can be used by
related processes to refer to the f i le .

OS/2 2.0 also supports extended attributes, which enable an appl ication to attach
various i nformation to a fi le object. Extended attri butes consist of an ASCI I text
name and an arbitrary value. For i nformation about naming extended attri butes and
defi n i ng data types, see the OS/2 Programming Guide, Volume I.

1 -8 Application Design Guide

Because any appl ication i n the multitaski ng envi ronment can issue API functions, it
is possible that two appl ications can request access to the same fi le at the same
t ime. To prevent such conf l icts, the operating system provides faci l it ies that, upon
request, control access to the i nformation stored in fi les. The process that opens a
fi le can define how other processes must share the fi le. If the fi le is large and needs
to be used frequently, a procedure cal led file locking permits a process to protect
only smal l portions of the f i le , leaving the rest of the f i le avai lable.

OS/2 2.0 manages its disk fi les and devices in essential ly the same way. For
example, an appl ication can use the same functions to open and read from a disk
fi le as it uses to open and read from a serial port. Each open fi le or device is
identified by a unique fi le handle. The appl ication uses the hand le i n system
functions to access the fi le or device.

A standard device represents a stream of characters, much l i ke a f i le does. In most
cases, devices look l i ke f i les to the appl ication. Like fi les, devices are identified
with ASCI I names. The OS/2 Programming Guide, Volume I describes specific
nam ing conventions.

The operating system provides fi le subsystem API functions that enable the
appl ication to create, open, read, write, and close devices. 1/0 performed on
character devices (devices that handle data one character at a time) must be
processed serial ly. When a device is opened, it is assigned an identifier cal led a
device handle. The device handle can be used by a process for input and output,
and for other read and write operations to and from the device.

When a process opens a f i le , it specifies whether the fi le can be shared-that is,
whether it can be accessed and possibly modified by other processes. This sharing
also appl ies to devices that a process m ight open. Processes can open any device
di rectly, i ncluding the parallel port and the serial ports. OS/2 2.0 provides a wide
range of 1/0 control functions that a process can use to access and set the modes of
the devices it has opened.

Each process started in the OS/2 envi ronment is provided with a standard set of
device handles. These identify the system's standard i nput device (usual ly the
keyboard) , the system's standard output device (usual ly the screen), and the
standard error device (usual ly the screen) to which error i nformation is written.

Ord inari ly, the system automatical ly opens three fi le handles when an app l ication
starts: the standard-input, standard-output, and standard-error fi les. These fi les
handles correspond to the keyboard and fu l l -screen display. The appl ication can
use these f i le handles to read from the keyboard and write to a ful l-screen display.

An appl ication cannot disti nguish between fi le handles, device handles, and p ipe
handles. The advantage of using the standard device handles is that data stored i n
f i les can be redi rected to devices without i ntervention by the appl ication. This also
means that one appl ication can redi rect its output data stream to another
appl ication's i nput data stream by using a pipe.

Chapter 1. OS/2 2.0 Overview 1 -9

lnterprocess Communication
In a m ultitaski ng envi ronment, processes and threads need to communicate with
one another to synchronize events and to control access to shared resources. The
operat ing system provides a set of i nterprocess communication (IPC) protocols for
such purposes. These protocols are semaphores, pipes, queues, shared memory,
exception hand l i ng , m ulti ple DOS sessions, and device support.

Semaphores
A semaphore is used by a process to s ignal the begi nn ing and end of a given
operation, and to prevent more than one thread with i n the process from accessi ng a
specific resource at the same t ime. A process can create and use three types of
semaphores: m utual exclusion (mutex), event, and m ult i p le wait (muxwait) .

A m utex semaphore is used by several threads with in a process, or by several
processes, to protect access to crit ical regions. For example, a m utex semaphore
can be used to prevent more than one thread at a ti me from updating a f i le on disk.

An event semaphore provides a means for signal i ng among threads or among
several processes. A typical use would be manag ing shared memory. For
example, process 1 writes i nto the shared region, then uses an event semaphore to
signal processes 2 and 3 so that they can proceed to access the shared data.

A muxwait semaphore enables a thread to wait on several event or m utex
semaphores s imu ltaneously. It is a com pound semaphore that consists of up to 64

event semaphores or m utex semaphores (the two types cannot be m ixed) . A typical
use would be when a thread requi res access to several shared regions of memory
at once. The system blocks the thread unti l the thread acqu i res ownersh ip of a l l
mutex semaphores protect ing the shared regions. The thread can then access the
regions.

Pipes
Pipes enable two processes to comm unicate. They are identified by handles and
can be accessed l i ke f i les. To communicate, processes open a pi pe, then one
retrieves the p ipe's read handle, and the other retrieves its write handle. The
processes then communicate by writi ng to and reading from the pi pe using the
handles. Typical ly, a p ipe is used to di rect the output from one process to the
standard i nput of another process.

In OS/2 2.0, there are two types of pi pes- named and unnamed. An unnamed pi pe
is used only for communications between related (parent and chi ld) processes. A
named p ipe can be used to communicate between unrelated processes running on
the same or different computers. Any process that knows the name of the p ipe can
open and use a named pi pe. One process (the server process) creates and
connects the pi pe, and another process (the c l ient process) opens the pi pe. Once
the p ipe is connected and opened , the server and cl ient processes can pass data
back and forth.

The c l ient process can be local (on the same com puter as the server process) or
remote (cl ient process connects to a server process across a local area network, or
LAN) .

1 -1 0 Application Design Guide

Queues
A queue is an ordered l i st of data that a process can use to receive i nformation f rom
other processes. Processes pass i nformation to a queue in the form of elements.
The process that owns the queue can then read the elements from the queue. (PM
appl ications also have queues, cal led message queues. Message queues and the
queues descri bed here are not the same.)

E lements in a queue can be accessed i ndividual ly. They can be accessed in f i rst i n ,
f i rst out (FIFO) or last i n , f i rst out (LIFO) sequence. The appl ication also can defi ne
the priority of a queue element. Although mu lti p le processes can write to a queue,
only the process that created the queue can read it . I ndividual elements in a queue
can be exami ned without bei ng removed from the queue.

Shared Memory
OS/2 2.0 enables two processes, or a l l processes, i n the system to share a s ingle
memory object. Appl ications m ust exp l icit ly request access to shared memory; the
shared memory is protected from appl ications that are not granted access.

For two processes to share memory, one process al locates a memory object and
designates that i t is to be shared. The process then issues a function to notify the
system that a second process can share the memory. The operati ng system returns
the linear address, which is a a un ique val ue that identif ies the memory object. The
fi rst process then passes the l i near address to the second process by way of some
type of I PC, such as a queue.

If all processes in the system need to share a memory object, the a l locati ng process
g ives the object a name. This name then is passed to other processes using I PC,
such as a queue or a pi pe. The other processes then request access to the object
by name, and the operat ing system returns the selector to the memory object. This
technique is cal led named shared memory.

Exception Handl ing
With OS/2 2.0, an appl ication can deal i nternal ly with unexpected errors (such as
memory protection violations and term i nation signals from other processes) without
havi ng to term inate.

A m ultitaski ng operat ing system such as OS/2 2.0 m ust manage app l ications
careful ly. A serious error (such as an attempt to access protected memory)
occurri ng in one appl ication cannot be al lowed to damage any other appl ication i n
the system . To deal with errors that m ight damage other appl ications, OS/2 2.0
defi nes a class of error condit ions cal led exceptions, and defines default actions for
those errors.

When an exception occurs, the operati ng system usual ly ends the appl i cation
causi ng the exception, un less the appl ication has registered its own
exception-hand l i ng routi ne. An appl ication can use these routi nes to attem pt a
recovery from unexpected events. The appl ication m ight be able to correct the
exception and conti nue.

Multiple DOS Sessions
OS/2 2.0 provides DOS compati b i l ity through the vi rtual 8086 mode of the 80386
m icroprocessor, and it provides more than one DOS com pati b i l ity envi ronment. The
DOS envi ronment offered with OS/2 2.0 is more DOS-compati b le than the one
offered with previous versions, because it encapsulates the enti re DOS envi ronment
in a vi rtual machi ne. OS/2 also enables the execution of m ultip le concurrent DOS
sessions. This method of i m plementation provides pre-em ptive m ulti tasking for

Chapter 1. OS/2 2.0 Overview 1 -1 1

DOS sessions, and a l lows normal OS/2 levels of memory protection; that is,
provides isolation of system memory and memory belongi ng to other appl ications,
protection from i l l egal memory accesses by unpredictable appl ications, and the
abi l ity to termi nate sessions where appl ications are "hung."

A DOS appl ication can be run in a ful l-screen, as a window, or as an icon i n the
background. In addition to better protection, better compatib i l ity, and more DOS
sessions, the DOS envi ronment of OS/2 2.0 gives appl ications more than 600KB i n
which to execute.

Device Support
Device drivers are the software i nterface between appl ications and the operating
system, and the hardware. Device drivers enable the appl ications and operating
system to be somewhat device i ndependent. If the device-driver layer did not exist,
the operating system would have to be rewritten every time a new device is added.

There are two types of devices-character and block. A character device handles
streams of data, and performs i n a serial manner. A block device normal ly holds
large amounts of data that can be accessed either serial ly or randomly. B lock
devices i ncl ude disks and vi rtual disks. From the appl ication's viewpoint, transfers
of b locks of data are transparent. The appl ication performs 1/0 using the f i le-system
API functions.

In the multitasking envi ronment, mult iple appl ications share resources, i ncluding
devices. A device driver manages the device to ensure that the app l ications have
access to it. The appl ication uses an API function to communicate with the
operating system. The operating system uses an 1/0 control (IOCtl) i nterface to
communicate with the device driver.

The device driver often needs access to system services, such as memory or
i nterprocess communication mechanisms. These services are provided by
device-helper (DevHi p) routines. Some of the services are:

• Manag ing the device queue
• Synchronizing threads
• Managing memory
• Manag ing processes
• Manag ing i nterrupts
• Hand l i ng the t imer
• Monitoring data buffers.

The architecture of the device driver model for OS/2 2.0 separates DOS support from
the basic OS/2 device support by providing two types of device drivers: physical
and v irtual . Most 1 6-bit OS/2 device drivers work "as is, " un less they provide
support for the DOS envi ronment using the DevHelp function, SetROMVector. I n
these cases, the driver sti l l works, but not for the DOS envi ronment. The code
written as bimodal code in these drivers sti l l works in OS/2 2.0, but only the
protect-mode code wi l l be cal led.

The basic device driver-model for OS/2 2 .0 has also been enhanced to support
devices i n a paged envi ronment. Most devices that use d i rect memory access
(DMA) cannot handle blocks of memory that are not adjo in ing, which occurs as soon
as paging is enabled. Therefore, a device driver should be written accord ing to the
device's abi l ity to deal with a paged envi ronment.

1-12 Application Design Guide

�. PM Fundamentals

PM provides a message-based, event-driven, g raphical user i nterface for the OS/2
envi ronment. Some of the major features of PM are:

• The window envi ronment
• The user i nterface
• I nput management
• Appl ication resource management
• Data exchange
• The I nformation Presentation Faci l ity
• Presentation d rivers

PM enables programmers to bu i ld app l ications that conform to Systems Appl ication
Architecture· (SAA*) gu idel i nes. For more i nformation on SAA requ i rements, see
the Systems Application Architecture: Common User Access Guide to User
Interface Design and Systems Application Architecture: Common User Access
Advanced Interface Design Reference.

The Window Environment
The PM user i nterface is based on windows, an area of the screen through which
i nteraction is presented to the user. A large number of API functions (which begi n
with the prefix Win) are avai lable for control l i ng wi ndows. These functions enable
an appl ication to create, size, move, and control windows and thei r contents. The
OS/2 Programming Guide, Volume II descri bes common programm i ng techniques
for manag ing the wi ndow envi ronment.

Defin ing Window Relationships
A window is an area of the screen where an appl ication displays output and
receives i nput from the user. A screen can have more than one wi ndow. The
com mon analogy is that m ult ip le windows on the screen are l i ke many pieces of
paper on a desktop. I n the analogy, the desktop is the area that comprises the
background of the screen . Windows, l i ke papers, can be arranged to l i e on top of
one another and to overlap. If they overlap, the bottom papers can be either
partia l ly or completely h idden. Wi ndows can be defined in the window hierarchy
usi ng the API .

Figure 1-2 on page 1-14 i l l ustrates the wi ndow hierarchy as it appears on the
screen .

Chapter 1 . OS/2 2.0 Overview 1 -1 3

Child Window 1a

I Child Window 1 b

Figure 1-2. Windows on the Screen

The desktop window is at the top of the h ierarchy. Below the desktop window are
the top-level windows, cal l ed main windows. Main windows can overlap one
another and, at times, a main window can be completely h idden. Operations on one
main window do not affect those on other main windows.

F igure 1 -3 i l lustrates the h ierarchical arrangement of windows created by the
app l ication.

Parent Child

Figure 1-3. Window Hierarchy

Main windows can create subord inate windows i n a parent-ch i ld order of
descendancy. A ch i ld window is always clipped to its parent window, meaning that
only the part of a ch i ld window that l i es with i n the parent window is visible.

Windows that share the same parent are cal l ed sibling windows. like main
windows, s ibl i ng windows can overlap one another. Every s ibl i ng window has a z
order position that specifies where it l ies in the stack of overlapping windows.

1 -14 Application Design Guide

The appl ication can define another rel ationshi p i n addition to the h ierarchical one.
When a wi ndow is created, an owner window can be defined. The two wi ndows
m ust be created by the same thread. The owner relationshi p varies at different
levels of the h ierarchy. A chi ld window can send messages to its owner wi ndow. If
one main window owns other main windows, and the owner wi ndow is hidden,
m in im ized, or closed, a l l the owned main wi ndows also are h idden, m in imized, or
closed.

A window can be visible, h idden, or partly h idden on the screen . When a wi ndow is
h idden or partly h idden, its size, position, and hierarchical and owner relationshi ps
remain the same. However, when the window becomes visib le agai n , any area of
the wi ndow that was previously h idden is redrawn. A window can also be disabled,
mean ing that it is sti l l visib le but unable to respond to mouse i nput.

Creating and Classifying Windows
A window and its associated window procedure are considered to be a program
object. A window procedure "represents" a window i n the sense that the window
procedure controls a l l aspects of the wi ndow, such as what it looks l i ke, how i t
responds to changes, and how it processes input. See " Processing Messages" on
page 1 - 19 for more i nformation about the window procedure.

A window class is a set of windows that has the same window procedure to
i mplement them. Many windows can belong to a window class. The windows can
differ from one another only i n the data they process. If m ulti p le app l ications have
need for the same type of wi ndow, i m plementing common window classes is an
efficient way of usi ng system resources.

OS/2 2.0 provides many preregistered wi ndow classes. The windows specified i n
these classes are designed specifical ly to meet the needs for a graphics-based
standard user i nterface. These window classes i nclude those that i mplement such
windows as the one described in "Standard and Control Windows" on page 1 -1 6. If
a preregistered wi ndow class is not provided, the appl ication m ust register the class
at the process level . Several API functions are avai l able for appl ications to reserve
a smal l area of memory (the window words area) for wi ndows in classes registered
by the appl i cation. If a window is expected to handle large amounts of data, the
data should be held in memory and referred from the wi ndow words area.

A wi ndow class can be defined as private or public. Windows created in either class

can be used by any process i n the system . " Publ ic" and " private" refer only to the

wi ndow class at the time the window is created.

Only the process with which a private class is registered can create a window for
that class. The class name m ust be unique to the process. However, other
processes can register private classes with the same class name.

Any process can create a window in a publ ic c lass. Window procedures for
wi ndows i n publ ic classes m ust be avai l able to a l l processes. Thus, such classes
should be defined in Dlls. Publ ic-class names m ust be unique for each process.

Al l windows have certain attr ibutes. Each wi ndow is identified by a window handle.
Each wi ndow represents a rectangle descri b ing the size and position of the window
on the screen. The size of a wi ndow is defi ned in picture elements (pels) relative to
the orig in of the parent wi ndow. The orig in of a wi ndow, the lower-left corner, is the

Chapter 1 . OS/2 2.0 Overview 1 -1 5

0,0 coord inate i n a set of x and y axes. The x and y coord inates defi ne the top,
bottom, and sides of the wi ndow. The coordi nates range from -32768 to +32767
pels in each di rection, so the maximum size that can be specified i n any di rection is
65535 pels.

The appl ication also can position a window by defi n ing its relative distance from the
poi nt of orig in (0,0) of its parent window. If the appl ication positions a chi ld wi ndow
outside its parent window, which is permissible, only the part of the chi ld window
with in the parent window will be visible on the screen.

Using a set of API functions, the appl ication can modify the behavior of a window in
a window class, or create a new class from an existi ng one. This process,
subclassing, enables the appl ication to modify the behavior of a single window
without rewriti ng its complete window procedure.

Providing the User Interface
The Common User Access· (CUA*) is a set of guidel i nes for designing and writi ng
the appl ication's user i nterface. The guidel i nes cover standard menu-bar items,
i nteraction techniques, and window types. Use the CUA guidel i nes in decid ing how
to design the user i nterface for your appl ication's user i nterface.

Many PM services, if a l lowed to default, help to enable a consistent user i nterface
among appl ications designed and written according to the CUA guidel i nes.
Consistency also is enabled by the selection of appropriate options. Ensuri ng
consistency is the responsib i l ity of the appl ication developer.

Standard and Control Windows
I nformation is displayed on the screen through the use of windows. PM supports a
standard window, whose elements general ly conform to CUA guidel i nes.

The standard window, which the appl ication controls using the API functions, can
have al l or some of the fol lowing elements:

• Title-bar icon
• Window borders
• Window sizing buttons
• Menu bar
• Scrol l bars
• Window title
• I nformation area

Figure 1 -4 on page 1 - 1 7 i l l ustrates a standard window and its elements.

1 -1 6 Application Design G uide

Title-Bar
Icon

Window title

Figure 1-4. Standard Window

Horizontal scroll bar

Window sizing buttons

Title-Bar

Vertical
scroll

bar

The title-bar icon, window border, and window sizing buttons enable a user to
change the size and position of a window. The menu bar and scrol l bars enable a
user to work with the window's contents. The window title i ndicates the name of the
object seen in the window, and it also i ndicates which kind of view is displayed. A
view is a way of l ooking at an object's i nformation. Different views display
i nformation i n different forms, which m im ics the way i nformation is presented i n the
real world. The i nformation area disp lays brief messages to a user about the object
or choice that the cursor is on. I nformation about the normal completion of a
process can also appear i n the information area. For example, if a user copies
several objects from one container to another, the i nformation area i n a container's
window could display a brief message to tell the user when the copying has been
completed.

The standard window is created using a standard frame window. The elements of
the standard window, such as the title bar and the menu bar, are chi ld windows of
the standard frame window. The chi ld windows are cal led control windows. The
system maintains a set of preregistered control windows that any appl ication can
use to perform 1/0.

From the appl i cation's perspective, control windows are no different from other
windows in the system , and the app l ication can manage them using
window-management functions. Each control window has its own window identif ier
and a specific set of messages. The appl ication can query the system to determine
the control window's parent.

Control wi ndows can be used as a part of a dialog window. A dialog window can be
created using a dialog template, which defi nes the position, appearance, and
identifier of the d ialog window and each of its chi ld windows. A template can be
loaded as a resource or created dynamical ly in memory. It can be used to create
d ialog windows of al l window classes. The window classes can contain control
windows of al l window classes. Also, the appl ication can create its own d ialog
controls by creating and preregistering its own control-window class.

Chapter 1. OS/2 2.0 Overview 1 -1 7

A dialog window is contro l led by a window procedure cal led a dialog procedure.
The dialog procedure is responsible for responding to al l messages sent to the
dialog window, either by sendi ng them to the control windows or returning them to
the default dialog procedure. A set of API functions enables the appl ication to
create, load, process, and cancel dialog windows. The dialog procedure can obtain
the handle of its chi ld windows, send messages to them, and process messages and
text stri ngs itself.

The standard frame window and the control wi ndows are implemented with
standard preregistered wi ndow classes. The standard frame window manages the
control windows and the c l ient window as the user interacts with them. The frame
window also is responsible for routi ng messages to the appropriate control and
cl ient windows.

Primary and Secondary Windows
CUA guidel ines define two types of windows: primary and secondary. In a PM

program, a primary window is a standard window, whi le a secondary wi ndow is a
control wi ndow or the chi ld of the main window.

A primary window is the mai n i nterface poi nt between an object and the user. It
appears when a user opens an object, and is used to present a view of an object or
group of objects when the i nformation displayed about the object or group of objects
is not dependent on other objects.

Object i nformation is presented in the area of the wi ndow below the menu bar. A
user can control the size and position of primary windows on the screen.

A secondary wi ndow looks very much like a primary window. For example, both
have window borders and title bars. The i mportant disti nction between a primary
window and a secondary window is based on how they are used. A secondary
window is always associated with a primary window and contains i nformation that is
dependent on an object i n the primary window. A secondary window is used, for
example, to al low a user to further clarify action requests. A secondary wi ndow is
always removed when the primary window is closed or m in imized and redisplayed
when the pri mary window is opened or restored.

Dialog Box
A dialog box extends a dialog between a user and a primary or secondary window.
It usual ly appears when the user selects a choice from the menu bar, generating a
pul l -down menu. Selecting one of the choices i n the pul l -down menu generates the
dialog box. The dialog box can contai n buttons, entry f ields, icons and text, l ist
boxes, and title bars. A dialog box and its supporti ng window enable the appl ication
to gather input from the user. A temporary dialog window usual ly is created for
special-purpose i nput, then canceled.

There are two types of d ialog boxes, modal and mode/ass. A modal dialog box
retains control unti l the appl ication issues a cal l to cancel it. Users cannot activate
other wi ndows belonging to the appl ication unti l they f inish i nteracting with the
modal dialog box. A modeless dialog box enables windows in other appl ications to
be activated after it has been created.

1 -1 8 Appl ication Design Guide

Handling Mouse and Keyboard Input
The session manager in the operating system manages appl ications runn ing in the
PM envi ronment, i ncluding thei r input and output operations. However, PM handles
PM appl ications, i ncluding thei r input and output operations. PM handles a l l i nput
as messages, which are packets of data.

PM supports user input from the keyboard and mouse pointer. The mouse pointer is
the symbol associated with the mouse poi nti ng device. Mouse input is provided by
pressing a button, and usual ly is di rected at the window under the mouse poi nter.
The precise position on the screen that is activated is cal led the hot spot. The
mouse poi nter also can be moved across the screen, and the operating system
provides support for that activity. The appl ication can di rect al l mouse input to a
si ngle window cal led a mouse capture window. A mouse capture window enables
the appl ication to track al l i nput from the mouse poi nter no matter where the mouse
pointer is moved on the screen.

Keyboard i nput is sent when any key on the keyboard is pressed. Al l keyboard
input is di rected to one window at a t ime. The window receivi ng keyboard input is
called the active window. A main window, or one of its chi ld wi ndows, is
responsible for keeping the window receivi ng the input visible on the screen.

The cursor is a symbol displayed with in a window that i ndicates where characters
entered from the keyboard wi l l be placed. The cursor can be moved to any location
with in a window. Its size and position are defi ned in coordinates relative to the
wi ndow in which the cursor is located. The appl ication can create, display, move,
and cancel the system cursor.

Processing Messages
The Common Programming I nterface (CPI) defi nes an appl ication structure that uses
a system of queues and appl ication window procedures for processing messages.
The PM message system conforms to the CPI and is fundamental to the smooth
operation of the PM envi ronment. A complete set of CPI reference manuals is
provided i n the SAA Library.

Chapter 1. OS/2 2.0 Overview 1 -1 9

Figure 1 -5 i l l ustrates the PM message-processing system .

Mouse
Posting

the
Message

System
Queue

�---.------.! Message 6

Keyboard
Message 5

Message 4

Message 3
Message 2

.----------l Message 1

Application ·aueue

Message 4 Application
Message Loop

Message 3
Message 2 G;) Message Message 1 -----.1

Sending
the

Application .__M_e_ssa---=g'-e __ ____.J

Window
P�u� ------� Returning

the
Message

Dispatching
the

Message

Figure 1-5. Message-processing System

I n the PM envi ronment, each i nput from the mouse or keyboard is del ivered to an
appl ication as a message. A message cannot be processed before previous i nput,
because the specific appl ication and window for which i nput is i ntended are not
known unti l all precedi ng input has been processed.

Al l i nput is fi rst placed i n a single queue cal led the system queue. The system
queue, which is shared by all appl ications i n the system, receives messages
generated by the user from the mouse and keyboard. The system queue can hold
the input from approxi mately 60 key presses and mouse cl icks. The system queue
can receive input from many sources, i ncluding the system itself, the timer, and
other appl ications. However, only user i nput is processed synchronously.

The system queue temporari ly stores user input so that nothi ng is lost if the user
enters data faster than the appl ication can process it. General ly, i nput is processed
in the order in which it appears in the queue, but the appl ication can change the
order by filtering the i nput. Fi lteri ng is performed with API functions, but should be
performed with discretion, because the processing of one i nput often changes the
context for the next.

Each thread that receives input has an application queue al located by an API
function. This queue does not receive user i nput d i rectly, but can receive other
messages d i rectly, such as messages from the system or timer. Messages are

1 -20 Application Design Guide

removed from the appl ication queue when the thread for which it is destined "gets"
it. The messages are prioritized if more than one is waiti ng. If there are none, the
thread is suspended unti l a message arrives.

The most efficient use of the system wi l l be ach ieved if you structure your
appl ication so that one thread remains responsive to user input whi le others
conti nue processi ng work. To be considered responsive to the user, the system
must complete processing i nput with in 0.5 seconds. That is, the thread hand l ing
input should check for the next message i n the queue with in that time.

A window procedure can control more than one window. The procedure receives
messages i n the form of four i nput parameters. The fi rst parameter specifies the
handle of the window for which the message is i ntended. The second parameter
i ndicates the type of message. The last two parameters contain message
parameters. Thei r i nterpretation depends on the particular message.

The window procedure processes the message, then sends a return value to the
sending code. A window procedure must respond to al l messages sent to it, even if
the response is to send the message back to the system's default window
procedure.

There are many types of messages, each with a unique identif ier, and appl ications
can defi ne thei r own message types using a range of identifier val ues.

Handling Application Resources
An application resource is held i n a resource file, a fi le with i nformation that hel ps
to define a window. The resource fi le defines the names and attributes of the
appl ication resources that must be added to the appl ication's executable file. The
resources are:
Accelerator table

Used to define which key strokes are treated as accelerators and the
commands i nto which they are translated. An accelerator is a si ngle key
stroke that i nvokes an appl ication-defi ned function.

Bit map

A representation in memory of the data displayed on an al l-poi nts-addressable
(APA) device, usual ly the screen.

Dialog and window templates

The definitions of a dialog box or window contai n ing detai ls of its position,
appearance, its wi ndow identif ier, and the identif iers of its chi ld windows.

Dialog include

A definit ion of a d ialog box in a header f i le .

Fonts

Icon

A typeface defi nit ion for character sets, marker sets, and pattern sets.

A graphical representation of an object, consisti ng of an image, i mage
background, and a label .

Menu
A l ist of choices that can be appl ied to an object. A menu can contain choices
that are not avai lable for selection i n certai n contexts. Those choices are
i ndicated by reduced contrast.

Chapter 1 . OS/2 2.0 Overview 1 -21

Pointer

The symbol d isplayed on the screen that can be moved by a pointi ng device.
The pointer is defi ned in a bit map.

String table

A nu l l -terminated ASCI I stri ng . A stri ng table is loaded when needed by the
executable fi le .

See the OS/2 Programming Guide, Volume II for gu idance in creat ing a resource
fi le . For gu idance i n bu i ld ing the resource f i le usi ng the Resource Compiler (RC)
uti l i ty in the IBM Developer's Toolkit for OS/2 2.0, see the on l ine Tools Reference.
The RC processes the resource text f i le to produce a binary f i le , then attaches i t to
the appl ication's executable fi l e so that an appl ication can access i ts resources.

Resource Editors
The Dialog Box Editor in the Tool kit enables you to design d ialog boxes i nteractively
on the screen and save the def in it ions in a resource fi le . The definit ion of the d ia log
box is i ncluded with other resource defin it ions i n the appl ication's resource fi le . �

The Font Editor i n the Toolkit enables you to edit font fi l es i nteractively on the
screen , save the definit ions in a font f i le , and i ncl ude the font f i le names in the
appl ication's resource fi le . The font fi le consists of a header fi le and a collection of
character bit maps represent ing the i ndividual letters, d ig i ts, and punctuation
characters that display text on a screen.

The Icon Editor in the Toolkit enables you to create customized icons, pointers, and
bit maps i nteractively on the screen and save the defi nit ions in a resource f i le . You
can work on a large-scale version of the icon or pointer whi l e displaying a rep l ica of
the actual size.

Exchanging Data Among Applications
Both users and active appl ications request an exchange of data with other
app l ications. Data exchange requested by a user is held in an object cal led a
clipboard. Requests by an appl ication to exchange data with other app l ications is
cal led dynamic data exchange (ODE) .

User-Generated Data Exchange
The user can transfer data from one appl ication to another using the COPY, CUT,
and PASTE commands. The f i rst step is to copy or cut (delete) selected data from
the source appl ication; the data is now in the cl i pboard. Next, paste (i nsert) the
cl i pboard data in the target app l ication. The same process can be used to move
data from one window to another with i n a s ing le appl ication. The CUT, COPY, and
PASTE commands m ust be supported by an appl ication as defined i n CUA
guidel i nes. They are i m plemented usi ng a set of PM API functions.

The c l i pboard is the object that temporari ly holds data. General ly, data is placed i n
the c l i pboard when a request to paste i t i s received . Once data has been sent to the
cl i pboard, it should not be changed. Only one item of data at a ti me can be in the
cl ipboard, but the data can be in a variety of formats, such as text, metafi l e, or bit
map. The appl ication can either defi ne the formats or use one of the preregistered
standard formats. The appl ication also can register formats, as it can wi ndow
classes, so they can be used by al l app l ications i n the system.

The appl ication should support as many formats as possib le to satisfy requests from
target appl ications. For example, a spreadsheet app l ication should support a
spreadsheet format and as many common text formats as possi b le . Generati ng data

1 -22 Application Design Guide

i n al l formats supported by an appl ication can consume a lot of the operating
system's resources. It would not make sense, for example, for a word-processing
appl ication to support a spreadsheet format because that format is beyond the
scope of the operation of a word processor.

A cl i pboard can be owned by a thread. If a thread opens the cl i pboard , it has
exclusive access to the cl i pboard unti l the thread closes the cl i pboard.

The cl i pboard is owned by the last window that requested ownership . Only the
owni ng appl ication can change the owner of the cl i pboard. If an owning window is
canceled, data can remain in the cl i pboard. Before being canceled, the own ing
window must generate its data to satisfy subsequent paste requests.

Application-Generated Data Exchange
The DOE protocol enables appl i cations to access one another's data. Dynamic data
exchange uses the PM m essage-processing system and the shared-memory
i nterprocess communication protocol to pass large quantit ies of data among
appl ications. Al l API functions that manage shared memory beg in with the prefix
Dos.

The data is held in a shared-memory segment that is avai lable to designated
appl ications or to a l l appl icati ons in the system . Data is passed i n a
m utual ly-agreed-upon format. An appl ication that receives a handle to a data object
i n memory receives a message if the data changes. The appl i cation then can
ind icate, by way of a message, if i t wants the changed data to be sent to it, or i t can
end the exchange. See "Shared Memory" on page 1 -1 1 for i nformation about
shared memory.

Direct Manipulation
Di rect manipulation is a protocol that enables the user to visual ly d rag an object in a
window (the source object) and d rop it on another object (the target object) i n a
window. This causes an i nteraction, or data exchange, between two wi ndows.

The window contain i ng the d ragged object is referred to as the source. The window

contain i ng the object that was d ropped on is referred to as the target. The source

and the target can be the same window, different windows with in the same

appl i cation, or w indows belong ing to d ifferent appl ications. The d ragged object can
be the only visib le object in the source window, or i t can be one of many objects.

The target object can be the only visib le object i n the target window, or it can be one

of many objects.

A set of API functions with the prefix Drg supports requ i rements of source and target
app l ications and are described i n the Presentation Manager Programming
Reference, Volume I.

Information Presentation Facility
The I nformation P resentation Faci l ity (IPF) is a tag l anguage and compi ler that
supports the design and development of onl i ne i nformation. I nformation can be
associated with the windows and f ields of an appl ication, and can be d isplayed as a
Help faci l ity. I mplementation of a Help fac i l i ty requ i res two d ifferent development
efforts:

• The development of the code that communicates with I PF and PM to display hel p
panels.

Chapter 1. OS/2 2.0 Overview 1 -23

• The development of a l i brary of IPF tag-language fi l es that define the contextual
Help panels for the f ields with i n the wi ndows. �.

Coding the Application
The PM code that cal ls the IPF Help hook is in the PM default window procedu re.
Use Wi nDefWindowProc for a standard window, or WinDefDigProc for a d ialog box.
The functions relati ng to the creation of the Hel p i nstance are
WinCreateHelp lnstance, Wi nAssociateHelp lnstance, and Wi nDestroyHelp lnstance.

Developing the Help Information
A Help panel is a unit of text with i n an appl ication window. The database for the
Hel p-panel text i ncludes IPF tag language, which defines various characteristics of
the text displayed i n the Help text window. The IPF Compi ler translates the tags i nto
a format that is used by IPF. For more i nformation about I PF, see the Information
Presentation Facility Guide and Reference.

Presentation Drivers
Presentation drivers are special-purpose 110 rout ines that handle f ie ld
device-independent 1/0 requests from the PM and its app l ications. The requests are
resolved with the device-specific attributes of the device. For deta i led i nformation
about presentation d rivers, see the Presentation Driver Reference.

The presentation driver is a h igher-level i nterface to an output device than the OS/2
device driver. OS/2 device d rivers are loaded at privi l ege level 0, the h ighest
privi lege level . A l l 1 6-bit presentation drivers are loaded at privi l ege level 2 , whi l e
32-bit presentation drivers are loaded at privi lege level 3.

Presentation drivers are subsystems. They resolve 110 requests from PM and
appl ications in the PM envi ronment by i nterfacing d i rectly with the device or with i ts
device driver. Pri nter and p lotter presentation drivers use the spooler i nterface
begi nn ing with the prefix Spl to pass data and controls to the OS/2 device drivers.
Screen presentation drivers pass data and controls d i rectly to the display hardware
i nterface.

Presentation drivers are suppl i ed as Dlls. When a PM program is i n it ial ized, the
screen presentation driver is loaded and enabled automatical ly. Other presentation
drivers, such as those supporti ng the pri nter and plotter, are loaded and enabled i n
response to the appl ication requesti ng a device context.

The Graphics Programming Interface

The graphics programm i ng i nterface (GPI) consists of the OS/2 system functions that
let you create device-i ndependent g raphics for your app l ications. The GPI functions
are used i n conjunction with the window manager to draw l i nes, shapes, and text i n
a window. Appl ications can also use the G P I functions to draw graphics output on
such devices as raster pri nters and vector plotters.

Presentation Spaces and Device Contexts
A presentation space is the key to an appl ication's access to the system display, to
pri nters, and to other graphics-output devices. Conceptual ly, a presentation space
is a device-i ndependent space in which you can create and manipu late graphics.
The presentation space defines you r drawing envi ronment by specifying the tools

1 -24 Appl ication Design Guide

you have avai l able to create g raphics. These tools i nclude the graphics prim itives
g ranted to every presentation space, i n addition to the bit maps and fonts that you r
appl ication loads for its exclusive use.

Actual ly, a presentation space is l ittle more than a data structure whose f ields
conta in values that define the d rawi ng envi ronment. The values represent the
colors, widths, styles, and other attributes of the graphics you draw. The system
creates the data structure when you create the presentation space and i nit ial izes
the structure to default val ues.

You m ust create a presentation space to create graphics. You must also create a
device context to display those g raphics on a device. A device context is a bridge
from a presentation space to a specif ic device. You create a device context by
specifying the device you want to access and the type of access you want, such as
d i rect or queued (for pri nti ng) . You beg in displaying graphics on the device by
associat ing the device context with the presentation space. Once you have
associated the device context, any l i nes, text, and images you draw i n the
presentation space are also displayed on the associated device.

Li ke a presentation space, a device context is a data structure. It contains
i nformation about the device driver that supports the specified device. The device
driver i nterprets graphics com mands sent to it from the presentation space and
creates the correspond ing commands for its device. It then sends the commands
either d i rectly to the device or to the spooler, depending on the type of access you
gave the device context when you created it.

Graphics Primitives
I n OS/2 2.0, g raphics prim itives are l i nes, arcs, markers, text, and areas. They are
cal led pri m itives because you use them as the basic tools to create the documents,
p ictures, and other composite g raphics that your appl ications display to the user.

You draw a prim itive by using a Gpi function. For example, to draw a l i ne, you use
the Gpiline function and specify the end ing point of the l i ne. The function uses the
current point as the starti ng point for the l i ne and draws from the starti ng point to
the end ing point. The current point is s imply the end ing poi nt of the l ast pr im itive,
un less you exp l icitly set the current poi nt by using a function such as Gp iMove.

A line primi tive is a straight l i ne. An arc primitive is a curve. Curves can be arcs of
a ci rcle or an el l i pse, or they can be more complex curves, such as spl i nes and
fi l l ets. A marker pri mitive is a mark or character that you draw at a specific point.
Markers are typical ly used to plot points in a graph. An area pri m itive is a closed
f igure that can be fi l l ed with a pattern. A common use for an area pri mitive is to
represent a cross-section in a mechanical drawing.

Every pri m itive has a corresponding set of pr im itive attri butes. The attributes
specify the color, style, size and orientation of the prim itive when your appl ication
draws it. The prim itive attr ibutes are given default val ues when you create the
presentation space, so you can use the prim itives i mmed iately. However, you can
reset the attri butes at any t ime. You have the choice of chang ing the attributes for
i ndividual pri m itives or changing a specific attribute for all prim itives. For example,
you can set the color for a l l prim itives by using the GpiSetColor function, or you can
set it j ust for the l i ne pri m itive by usi ng the G piSetAttrs function.

Chapter 1 . OS/2 2 .0 Overview 1 -25

Graphics Objects and Operations
In addit ion to the graphics prim itives, OS/2 2.0 provides graphics objects and
operations that are used to manipu late pri m itives. G raphic objects are paths, bit
maps, fonts, and log ical color palettes. Graphic operations are cl i ppi ngs and
transformations.

Path
A path is a sequence of l ines that you can use to create a fi l l ed area, a geometric
l i ne, or a cl i p path. A path is very m uch l i ke an area prim itive, in that you can use
the path as a closed f igure and fi l l i t with a pattern. Un l i ke an area pri m itive,
however, a path can be used to create geometric l i nes, sometimes cal l ed wide
lines. Geometric l i nes are drawn, usi ng a g iven width and pattern, so that they
fol low the outl i ne specified by the path. The width of a geometric l i ne can be
transformed, un l i ke the width of a l i ne prim itive.

Bit Map
A bit map is an array of bits that represents an image you can display on a raster
output device. B it maps typical ly represent scanned i m ages and icons and are very
much l i ke i mage pri m it ives, except a bit map can have several different formats,
each specifying color i nformation that an i mage prim itive cannot conta in . Also, bit
maps can be used to create fi l l patterns to f i l l f igures created by usi ng paths and
area pri m itives. Final ly, bit maps can be copied from one presentation space to
another or even from one location to another with in the same presentation space.

Font
A font is a col lection of character pri m it ives that share a common height, l i ne
weight, and appearance. The height of a font is specified i n pri nter's poi nts, a poi nt
being a typographic unit of measu rement equal to 1 /72 of an i nch. A col lection of
fonts that share common stroke-width and serif characterist ics is a font fam i ly. The
term "stroke-width" refers to the width of l i nes used to draw characters and sym bols
from a font. A serif is a short cross-l i ne d rawn at the ends of the main strokes that
form a character or symbol . Some common fonts are 1 2-po int Helvetica··, 1 0-po int
Ti mes Roman Bold, and 1 2-po int Courier·· Ital ic.

To use fonts in an appl i cation, f i rst create a logical font. A logical font can be used
only by the appl ications that defines it, and is lost when the presentation space is �

deleted. The logical font describes the typeface and other characteristics of the font
and then assigns the font to the appl ication's presentation space by passi ng to it a
un ique local i dentif ier. (The identif ier is a number i n the range 1 through 254.)

Logical Color Palette
A logical color palette is an array of colors that an appl ication uses when drawing
graphics. Any pri m itive or other graphic you draw has one of the colors given in the
table. You specify the color by giv ing a color index. The i ndex identif ies the table
entry, defin i ng the color you want. Every presentation space has a default color
palette when it is created, but you can create a logical color palette to replace it i f
you need other colors. Creating a new palette associates the color i ndexes with
whatever colors you have specified in the correspond ing palette entry.

1 -26 Appl ication Design Guide

Drawing

Clipping
Clipping is a process that l i m its graphics output to a specif ic region on the display
screen or on a page of pri nter paper. You can use cl i pping with a presentation
space by creat ing a clipping area. The c l i pping area is the region where the output
is to appear. You can create this area by setti ng the d imensions of the graph ics
f ield and viewing l i m its, or by creating a clip path or clip region. A cl i p path is used
to def ine a curved cl i pp ing area in world coord inates. A cl i p region is useful when
an appl ication m ust cl i p an area shaped l i ke a rectangle or l i ke a number of
i ntersecting rectangles. If an appl ication tries to draw output outside the c l i pping
area, the system wi l l "cl i p" the output, prevent ing it from appearing on the drawing
surface of the output device.

Transformation
A transformation defines how the system should map the points of one coordinate
space i nto another. A coord inate space is a two-d imensional set of points used to
generate output on a video display or pri nter. Because al l g raphics pri m it ives and
other drawing objects use coordi nate spaces, a transformation affects the way al l
graphics are drawn by your appl ication. For example, you can use a transformation
to move a f igure from one p lace to another on the display screen or to rotate or
adjust the size of the f igure. Transformations typical ly are used to g ive the user
d ifferent perspectives of a s ingle drawing, or to create rotated or sheared figures
that would be t ime-consum i ng for the appl icati on to plot and draw.

You draw graphics by usi ng the OS/2 d rawi ng functions. A drawing function draws a
prim it ive or other graphic, applyi ng the prim itive attributes that were current when
the pr im itive was defined. For example, if the l i ne color is changed between the
defin ing of the two l i nes, each l i ne wi l l be d rawn in its own color. Lines, for
example, also have a l i ne style attri bute. The style determines whether the l i ne is
sol id or a series of dashes, dots, or both.

Some attri butes apply to a l l g raphics pri m itives. For example, the foreground and
background colors and mix modes affect al l prim it ives. The foreground color
defines the color of the pri m itive and the background color defines the color
" behind" the pri m itive. For a l i ne drawn with a dashed style, the dashes have the
foreground color, and the gaps between the dashes have the background color. The
mix modes def ine how the foreground and background colors are combi ned with
colors al ready present. The mix mode can cause the color to overpai nt the existi ng
color, ignore it, or m ix it by usi ng a b i nary operator, such as the exclusive-OR
operator.

Some attributes are specific to a part icular graphics prim itive. For example, the arc
parameters apply only to arcs. The arc parameters specify a transformation that
maps a ci rc le to another ci rcle, el l i pse, or s im i lar shape. When you draw an arc, the
system uses the shape defi ned by the transformed c i rcle as the shape for your arc.
You supply a m ulti p l ier to set the fi nal size of the arc.

A number of drawing functions use loadable resources to draw graphics. For
example, the text-drawing functions, such as GpiCharStri ng and G piCharStri ngPos,
can use a loaded font to draw text. To make a loadable resource ava i lab le for these
functions, you typical ly load the resource i nto memory and create a local i dentifier
for the resou rce. For example, to use a font resou rce, you load it by using the

Chapter 1 . OS/2 2 .0 Overview 1 -27

GpiloadFonts function, and then set the local identifier with the G piCreatelogFont
function. Once you have a local identifier, you can set the resource to be the current
resource by usi ng a function such as GpiSetCharSet. Li ke the text-drawing
functions, the marker and area functions can use resources when they draw.

Retained Graphics and Segments

Metafiles

OS/2 2.0 enables you to retai n the g raphics you d raw in your appl ication by storing
them in retained segments. You create a retai ned segment by sett ing the drawing
mode of the presentation space to DM_RETAIN or DM_DRAWANDRETAIN and
opening the se.gment. All subsequent graphics are stored in the segment (and are
also drawn on the device, if you specified DM_DRAWANDRETAIN) . You can close
the segment at any ti me and draw the contents by using a function such as
GpiDrawSegment. Retai ned segments are useful for storing graphics that the user
provides. Once stored, the graphics can be redrawn or edited at any time. An
element pointer enables the appl ication to move to a specific graphics element i n a
segment. The element can then be d rawn or replaced, or new elements can be
i nserted.

A metafi le is a fi l e i n which graphics data is stored. It is created with a device
context. A device context l i nks presentations to d�vices by converting
device-independent presentation-space i nformation i nto device-dependent
i nformation. A device context also gives appl ications access to i mportant device
i nformation such as screen d i mensions or pri nter capabi l i t ies. You associate the
metafi le device context with the presentation space, draw the graphics you want i n
the metafi le , and then d isassociate the device context from the presentation space �

and close it . Closing the metafile returns a handle that you can use to save the
metafi le in a disk fi le .

Metaf i les are useful when transferri ng g raphics images from one com puter to
another. An appl ication can load a metaf i le from disk and transfer it i nto the
appl ication's presentation space. The presentation space can be associated with
any device-display or pri nter. The graphics in the metafi le are stored as graphics
com mands, not as a bit map, so an appl ication can exami ne and extract portions of
the metafi le if necessary.

Producing Hard-Copy Output
An appl ication can send alphanumeric and g raphics data d i rectly to a hard-copy
device (pri nter or plotter) , or to the spooler for pri nti ng when a suitable device is
free. The spooler creates pri nt jobs and stores each as a temporary spool fi l e on
disk. The advantages of usi ng the spooler are that i t a l lows hard-copy devices to be
shared among a number of processes in the system without i nterference. I n
addit ion, the spooler a l lows relatively s low printi ng operations to take place i n the
background, lett ing foreground appl ications continue to i nteract with the user. See
" Presentation Drivers" on page 1 -24 for more i nformation.

There are two mai n ways to send data to a hard-copy device. The recommended
way is to use the device functions to create a device context to which the data is
sent. This method enables the appl ication to control a pri nt job. For example, i t can
choose the spool queue to which the data is sent and a priority for the job, and i t can
query and subsequently use special features of the output device that is selected by
the spooler. For graphics appl ications, the graphics presentation space in which the
data is drawn must be associ ated with the pri nter device context.

1 -28 Application Design Guide

� ..
An appl ication can request direct pri nti ng (spooler not used) when it creates the
printer device context. Although this is not the recommended method, i t enables
specia l ized appl ications to use dedicated hard-copy devices that need not be shared
with other app l ications runn ing i n the system .

A n alternative method is t o use the DOS functions. With this method, data is written
to a spool f i le , if the spooler is running, or sent d i rectly to the chosen pri nter if the
spooler is not runn i ng. (Natural ly, the data m ust be formatted for the pri nt device.)
However, the appl ication has no control over the print job, so this method is not
suitable for g raphics appl ications.

The OS/2 2.0 spooler provides i mprovements in system use and performance. The
new Spl functions improve access to spooler faci l i ties. Spl functions control the PM
pri nt-spool i ng system , both local ly and on a network. See the Presentation Manager
Programming Reference, Volume I for a description of these functions.

The OS/2 Application Programming Interface Functions

The OS/2 system functions g ive appl ications access to all the features of the
operat ing system . These features, such as wi ndows, device-i ndependent graphics,
and multitasking, enables you to create appl ications that make optimal use of the
computer's memory, d isplay, and processor whi le sti l l meeting the needs of a wide
range of users through either the tradit ional character-based i nterface or the PM
graphical user i nterface.

The OS/2 system functions are organized i nto the fol lowing disti nct g roups:

Table 1-1

Group

Ddf

Dev

Dos

Drg

(Page 1 of 2) . OS/2 Function Groups

Usage

Dynamic-data formatting functions. Use to create and manage onl i ne,
context-sensitive help i nformation. These functions l et you d isplay both
text and g raphics and set up hypertext l inks between I nformation un its.

PM device functions. Use to open and control PM device d rivers. These
functions l et you create device contexts that you can associate with a
presentation space and use with the Gpi functions to carry
device-i ndependent g raphics operations for displays, pri nters, and
p lotters.

Control Program functions. Use i n fu l l-screen and Presentation
M anager sessions to read from and write to d isk f i les, to a l l ocate
memory, to start threads and processes, to communicate with other
processes, and to access computer devices d i rectly. Most functions i n
this g roup can be used I n P M appl ications.

Di rect mani pu l ation functions. Use to move g raphical representations
(OS/2 icons, for example) around the screen using a pointing device,
such as a mouse. Drg functions l et you i n it ial ize the structures that
convey the necessary i nformation about each object to the target and
which descr ibe the i mage to be d isplayed dur ing the d rag operation.
They provide the system with the type, rendering mechanism, suggested
name, container or folder name, name, true type, and native rendering
mechanism of the objects being manipu lated.

Chapter 1. OS/2 2.0 Overview 1 -29

Table 1-1 (Page 2 of 2) . OS/2 Function Groups

Group

Gpi

Prf

Spl

Win

Usage

Graphic-programm ing-interface functions. Use to create graphics output

for a display; a printer, or other output devices. The Gpi functions g ive
you a ful l range of g raphic primitives, from l i nes to complex curves to bit

maps. You choose the attri butes for the primitives (such as color, l i ne

width, and pattern) and then d raw l ines, character, and shapes. The

retained-graphics capabi l ity lets you save the drawi ngs in segments and

bui ld complex pictures by d rawing a chain of segments.

Profi le functions. Use to tai lor some of the aspects of the system,
including the names of ports, printers, printer drivers, and queues. Prf
functions also enable you to change the spooler path, screen colors, the

default printer and queue, the program l ist, and appl ication settings.

Spooler functions. Use to al low your appl ications to write data d irect to

a spool fi le. This means that data by-passes the presentation driver, so

it m ust be in a format that the printer can understand. Your appl ications

m ust format the data.

Window-manager functions. Use to create and manage windows. PM

appl ications use windows as the main i nterface with the user. Win

functions let you create menus, scrol l bars, and dialog boxes that let the
user select commands and supply input. Your appl ication receives all

mouse and keyboard i nput as messages from the message queue. Win
functions let you retrieve messages from the queue and dispatch them

to the window for which the input is i ntended.

From the appl ication's perspective, the code for each API function looks l i ke a
subroutine that can be cal l ed by name using an i ntersegment near cal l . The
subroutine that i m plements the API cal l is not part of the appl ication's executable
f i le . Relocation pointers to the subroutines are contained i n a dynamic link library
(DLL) , which i s described i n Chapter 5, " Dynamic Lin king" on page 5-1 . The loader
fi l ls in the addresses of the subroutines and prepares the executable for execution.

Before making an API cal l , the appl ication pushes parameters onto an execution
stack. After control is returned to the cal l i ng appl ication, any error code is i n the
EAX register. By contrast, a P M appl i cation i s returned data immediately in the EAX
register, i f the result of the cal l is a doubleword.

The cal l -return method of accessing system services has the fol l owing advantages:

• The appl ication can cal l functions d irectly, e l i m inating the need for a DOS-style
function router.

• The appl ication's executable f i l e is smal ler than it woul d be if i t contained al l the
code to i mplement the API cal ls.

• The API can be changed eas i ly without affect ing exist ing appl ications.

The i m pl i cation is that the API can be extended with a new set of API functions. I n
fact, whether the kernel controls a function, or i t i s contained i n a DLL, the
mechanics of the API are the same. Fol l owing certain conventions, a developer can
extend or replace an 110 subsystem.

The OS/2 2.0 Control Program Programming Reference and Presentation Manager

Programming Reference contain a comprehensive, alphabetical l i sting of a l l the API

functions, i ncluding the i r i nput and output parameters, error return codes, data

structures, and messages.

1 ·30 Application Design Guide

Chapter 2. The 32-bit OS/2 Programming Environment

This chapter describes:

• The 80386 Architecture

• How OS/2 2.0 takes advantage of the 80386

The Flat Memory Model
The Process Address Space
Memory Objects
Pag ing
Compati b i l i ty with 1 6-bit OS/2

lntel 80386 Architecture

The I ntel** 80386 is a powerful 32-bit microprocessor that forms the basis for OS/2
2.0. The 80386 i ncorporates m ultitasking support, sophisticated memory
management, p ipel i ned architecture, address translation cachi ng , and a h igh-speed
bus i nterface, a l l combi ned with i n the processor chip . Whi le the 80386 represents a
s ign if icant improvement over previous generations of I ntel m icroprocessors, i t
retains software compatib i l i ty with older 1 6-bit m icroprocessors such as the 8086
and 80286 fam i l i es.

The capacity of the 80386 processor is substantial . Some f igures are presented
below, in com parison with 80286 processors:

• 4, 5 or 6 m i l l ion i nstructions per second (M IPS)1 .

• 4 G igabyte physical address space, com pared with the maximum of 1 6
Megabytes avai lable o n the 80286.

• 64 Terabyte vi rtual address space, com pared with the 1 G igabyte avai l able on
the 80286.

• Abi l ity to handle memory objects from 1 byte to 4 G igabytes in size, compared to
segments of 1 6 bytes to 64 K i lobytes on the 80286.

• Paged memory management usi ng 4 Ki lobyte pages, com pared to the 80286
which offered only segmented memory management.

This chapter provides an overview of the 80386 processor architecture, in order to
serve as a base for understandi ng the changes made in OS/2 2.0. More detai led
i nformation about the 80386 can be found i n :

• lntel 80386 Hardware Reference Manual (ISBN 1 -5551 2-069-5)

• lntel 386 DX Programmer's Guide (ISBN 1 -5551 2-082-2)

• IBM PS/2 Model 80 Technical Reference (IBM PIN 84X1508) .

1 Sustained rate at clock speeds of 16. 20 and 25 MHz.

© Copyright IBM Corp. 1992 2-1

Physical Characteristics
The 80386 processor consists of six dedicated units:

• Bus I nterface Unit
• Code Prefetch Unit
• I nstruction Decode Unit
• Execution Unit
• Segmentation Unit
• Pag ing Un it

These i ndiv idual units are connected by 32-bit buses and operate i n paral le l to
provide a 6-stage p ipe l i ned execution of i nstructions. This i m pl i es that up to six
different i nstructions may be held concurrently with in the chip, at d ifferent stages of
execution. To further i mprove performance, the 80386 uses on-chi p caching and
i m plements sophisticated memory management and bit manipulation (such as a
64-bit barrel shifter) i n the hardware.

The 80386 chi p contains e ight 32-bit general registers. To provide com pat ib i l i ty with
the 8086 and 80286 processors, the 80386 p rovides the capab i l i ty to use the
lower-order 16 bits of these registers, or the upper and lower 8 bits of these
registers, to represent the 1 6-bit registers used in these previous processors. This
is i l l ustrated i n F igure 2-1 .

32-Bit

�
1 6-Bit 1 6-Bit

� r'l
31 1 6 1 5 8 7 0 1 5 0 31 0

I E�X AX cs I EFLAGS I
I E+x BX ss I E I P I
I E?x ex DS

Status Register

I E?x ox ES

E+x BP FS

E�l Sl GS

E? l D l
Segment Register

E�P SP

General Register

Figure 2-1 . 80386 General, Segment and Status Registers

Note that programs runn ing i n vi rtual 8086 mode may uti l ize the fu l l register set of
the 80386 (al l 32-bit registers i nc luding the new FS, GS, debug, control and test
registers) . The programs can also use i nstructions with 32-bit operands through the
use of the size prefix.

2-2 Application Design Guide

�

�

The 80386 also provides six 1 6-bit segment registers which are used to conta in
segment selectors, thus enabl i ng the same segmented memory model used i n the
80286 processor. Note that the FS and GS segment registers are new in the 80386.

The i nstruction poi nter (E IP) register and the flags (EFLAGS) register are both 32-bit
registers.

Note that appl ications written for the 80286 run unmodif ied on the 80386. This is
because the 80286 i nstructions, addresses, l i m its, segment types etc, are a fu l l
subset of those avai l able i n 80386, and run i n 1 6-bit mode automatical ly. The 80386
handles this very s imply; if the upper word (1 6 bits) of a memory reference is zero,
then that reference m ust be an 80286 reference.

The registers described above are avai lable to app l ication programmers, either
directly usi ng assembly language or i nd i rectly through the use of h igher-level
programm i ng languages. The 80386 processor provides a number of additional
registers which are not normal ly avai lable to appl ications, but may be used by
operat ing systems and system software.

• The 80386 provides four memory management registers:

Global Descri ptor Table Register (GDTR)
Local Descri ptor Table Register (LDTR)
I nterrupt Descri ptor Table Register (IDTR)
Task Register (TR)

These registers contain pointers to data structures used by the segmented
memory model , al lowi ng compatib i lity with software written for the 80286
processor.

• Four control registers (CRO to CR3) are used to contai n pointers to data
structures used by the paged memory model and for status i nformation. These
registers are new in the 80386 processor, s ince previous processors d id not
support the paged memory model .

• Eight debug registers (ORO to DR7) and two test registers (TR6 and TR7) are
provided to aid i n real-time system and appl ication debugg ing . These registers
are also new i n the 80386.

Memory Addressing
The 80386 processor, l i ke i ts predecessor the 80286, can operate in two add ressing
modes; real mode or protect mode. The memory addressing schemes used i n each
of these modes are described in the fol lowing sections.

Real Mode
When the 80386 is powered up or re-i nit ia l ized via a hardware reset, the processor
is set i nto real mode. In real mode, the 80386 effectively operates as a 1 6-bit
processor. Program addresses correspond d i rectly to physical memory addresses.
Memory is addressed usi ng the segmented memory model only (pag ing is not
supported) , and the system's physical address space is l i m ited to 1 MB of real
memory. Vi rtual memory is not supported in real mode.

The use of physical memory addresses d i rectly by appl ications prevents any
protection bei ng appl ied by the processor to memory references. Hence
appl ications executing i n real mode may access one another's memory, or that of
the operat ing system.

Chapter 2 . The 32-bit OS/2 Programming Environment 2·3

Segment registers are used to supply the base address for each type of memory
segment (OS - data segment, CS - code segment, SS - stack segment and ES - extra
segment) . F igure 2-2 on page 2-4 shows how a segment is addressed i n real
mode.

Real Address Mode 1 M

I Segment Register I oooo 1
Segment
Base Size
Address 1 6 Bytes
20-bit to 64K Bytes

�

0

Figure 2-2. Real Mode Addressing

Segment

1 -Megabyte
Physical
Address
Space

Each memory reference consists of a 1 6-bit segment address and a 1 6-bit offset.
The processor automatical ly adds four b inary zeros to the segment selector val ue
(equivalent to mu lt ip ly ing by 1 6) to obtain a segment base address in memory. Thus
a segment may start on any 1 6-byte boundary with i n the 1 MB physical address
space. .�

The requ i red memory location with i n the segment is determi ned by addi ng the offset
to the segment base address. Since the offset is 1 6 bits i n length, the maximum
offset (and therefore the maxi mum size of a segment) is 64KB.

Protect Mode (Segmented Memory Model)
When the 80386 is switched to protect mode by software com mand, the ful l 32-bit
capabi l it ies of the processor are enabled, and the system's physical address space
is i ncreased to 4GB. Si nce v i rtual memory support is enabled in protect mode, the
vi rtual address space visib le to an appl ication i ncreases to a theoretical maximum
of 64 Terabytes2• Each process occupies a separate logical address space, and the
80386 provides fu l l memory protection between the address spaces of different
processes, thereby prevent ing an appl ication from i nadvertently accessi ng and/or
corrupt ing memory used by another appl i cation. Note however that under OS/2 2.0,
mu lti p le threads may be created with i n a single process, and dispatched
i ndependently by the operati ng system . These threads share a common address
space, and it is therefore the responsib i l i ty of the app l ication developer to ensure
correct behavior of and synchronization between mult ip le threads with i n a s ing le
process.

In protect mode, the fu l l 32 bits of the segment registers are used. These no longer
contai n the segment base address; rather, they contain a value which i ndexes a
descriptor table, which i n turn refers to the physical memory location of the
segments. The lower-order 16 bits of the register contai n the segment selector

2 Note that in OS/2 2.0. this is is l imited to 512MB per process in order to reserve memory for operating system use and to retain fu l l
compatibi l ity with appl ications written for previous versions of the operating system, which used 111-bit addressing.

2-4 Appl ication Design Guide

which identifies the segment, and the higher-order 1 6 bits are used i nternal ly to
mainta in control i nformation about the segment.

Of the 16 bits which make up the segment selector, two bits are used to specify the
privi lege level of the segment, and one bit is used to select between the Global
Descriptor Table (GOT) and a Local Descriptor Table (LOT) . The GOT is used by the
operati ng system or privi leged software to maintai n control over all segments with in
the system . A un ique LOT is maintained for each process and used to control only
the memory segments used by that process. I n this way, each process is prevented
from accessi ng the memory used by another process.

The remain ing 1 3 bits are used as an I ndex i nto the appropriate descri ptor table,
where the physical memory address of the segment is stored. This results in a total
of 81 92 entries per descri ptor table.

A memory address is made up of the segment selector pl us a 32-bit offset, which is
added to the segment base address determi ned from the descriptor table, i n order
to produce a 32-bit l i near address. This address translation operation is shown i n
Figure 2-3.

Descriptor
Table Entry

Base Address

Linear Address

31

Offset

Figure 2-3. Protect Mode Addressing-Without Paging

The maximum al lowable value for the offset, and thus the maximum size of a
segment, is defi ned by two things. Each entry i n a descri ptor table contains a 20-bit
l i m it field. These 20 bits al low a maximum segment size of 1 MB, usi ng the byte as
the unit of size.

However, the descri ptor table entry also contains a granularity bit, which specifies
that either the byte or the page may be used as the unit of size i n the l i m it f ield.
When usi ng page granularity, the 20 bits in the l i mit f ield represent a multi p le of
4KB, a l lowing a segment size of 4KB to 4GB. Si nce the GOT (which contai ns all
segments i n the system) may conta in up to 8 192 entries, this results i n a total
system vi rtual address space of 64 Terabytes.

Chapter 2. The 32-bit OS/2 Programming Environment 2-5

Paging

Note however, that OS/2 2.0 does not use the 80386 segmented memory mode l .
Rather, it uses the 32-bit f lat memory model , which results i n a system global
address space of 4GB. This reduces the com plexit ies of appl ication programm i ng
that are i nherent i n the segmented memory model , and i ncreases the potential for
portabi l ity of the operati ng system and appl ication code to other hardware
platforms. The maximum memory accessib le by an app l ication i n the system,
known as the process address space, is 512MB, which a l lows ful l compatib i l ity with
appl ications developed for previous versions of the operat ing system .

Protect Mode (Flat Memory Model)
T:lle 80386 is able to address very large memory (up to 4GB) in a s ingle segment. It
may therefore be desi rable not to use th.e normal segmented memory model , but
si m ply to use the enti re system memory as a s ing le l i near address range. Whi l e the
80386 does not have a mode bit for disabl i ng segmentation, the same effect can be
achieved by m apping the stack, code, and data spaces to a s ingle range of l i near
addresses. When this is done, the 32-bit offsets used by 80386 memory references
can cover the enti re l i near address space.

OS/2 2.0 uses this technique to i mplement a f lat addressing model . The operati ng
system effectively creates a s ing le code segment and a s ing le data segment, with
the base address of each segment selector set to zero (or any other address
designated as a " re lative" zero address) , and a segment size of 4GB. This is
equ ivalent to sett ing the same segment selector i nto the CS, OS, ES, FS, and SS
registers. The selectors for these segments are a l located with in the GOT, and the
offsets are therefore equ ivalent to l i near memory addresses.

The advantage of usi ng such a technique is that it greatly s impl ifies memory
management with in an appl ication, since the appl ication developer no longer need
be concerned with the i nternal i m plementation of data structures as segments with
a defi ned maxi mum size. The use of a f lat memory model also faci l itates migration
of the operat ing system and app l ication code to other hardware platforms, si nce the
code is not expl icit ly designed around the segmented memory model .

I n addit ion to the segmented memory management offered on the earl ier 80286
processors, the 80386 provides a paged memory model . This is an optional function
of the 80386, and there are no d i rect performance impl i cations if an operat ing
system chooses not to use paged memory. However, the paged memory model
provides signif icant performance benefits when runni ng large app l ications which
make extensive use of vi rtual memory.

Under previous versions of the operati ng system , the smal lest unit of memory (for
memory management purposes) was the segment, si nce the operat ing system was
designed to execute on the 80286 processor and use the segmented memory model .
With the 80286, segments may vary i n size between 1 6 bytes and 64KB; therefore,
there is a danger of havi ng a l arge amount of free memory which is fragmented i nto
small , d iscontiguous un i ts.

Previous versions of OS/2 manage this by moving segments with in real storage to
create a l arger free space, and by swappi ng unused segments to disk unti l they are
requ i red. This entai ls a h igh degree of overhead for the operating system . With an
80386 processor however, segments may be up to 4GB in size, and the overhead
can potent ial ly result in an unacceptable performance i m pact, particularly for
appl ications with very large segments.

2-6 Appl ication Design Guide

.. �

To avoid this situation, the 80386 processor provides a paged memory model ,
i mplemented i n hardware through a dedicated paging unit on the chip . A page is a
4KB unit of cont iguous memory, and replaces the segment as the unit of g ranularity
for memory management, i ncluding swapping to and from disk. Note that pag ing is
avai lable i n protect mode, in conjunction with both the segmented and f lat memory
models.

Using the paged memory model , an appl ication makes a memory reference in the
normal way, using either the segmented memory model or the f lat memory model .
I n the case of a segmented memory model , the segmentation unit i n the processor
automatical ly resolves the reference i nto a 32-bit value. However, this does not
represent a l i near address, but is com prised as fol lows:

• The h igh-order 1 0 bits of the f ield are used as an i ndex into a Page Di rectory
table. The entry in this table in turn refers to the base address of a Page Table.

• The next 10 bits of the f ie ld are used as an i ndex i nto the Page Table referred to
by the Page Di rectory entry. The entry i n the Page Table provides the physical
base address of a 4KB page.

• The lower-order 12 bits of the fie ld are used as an offset with i n the page referred
to by the Page Table entry.

31 22

Linear Addres

Control
Register

s

l+
0 §-4

D I R

I

Page
Directory

Dir
Entry

1 2 0

PAGE OFFSET

I
Page
Table � Pb Tbl �

Entry
0 0

Page
Frame

Physical
Address

Figure 2-4. Protect Mode Addressing-With Paging

Both the Page Di rectory and Page Tables contai n 32-bit page specif iers. The Page
Di rectory and Page Tables are themselves contained with in s ingle pages, and may
therefore conta in a maximum of 1 024 entries. Each page d i rectory can therefore
access up to 4GB of storage, which is the maximum physical address space of the
80386.

Pages may be shared between processes by defi n ing them i n the Page Tables of
each process. Note that this is done at the Page Table level rather than the Page
Di rectory leve l , in order to share only the i ndividual pages requ i red.

I n order to further reduce the overhead i nvolved i n looki ng up page references, the

80386 also provides a hardware-based address cachi ng mechanism for pag ing

i nformation. Th is is known as the Translation Lookaside Buffer (TLB) . The TLB

contains the physical addresses for the 32 most-recently-used pages, and therefore

al lows very fast access to these pages since it bypasses the normal page translation

process. Use of the TLB is handled enti rely with i n the pag ing unit , and is not visib le

to software.

Chapter 2. The 32-blt OS/2 Programming Environment 2-7

Protection
The 80386 processor i m plements five different types of protection for tasks
execut ing with i n the system . These are:

• Type checki ng
• Li m it checking
• Privi lege levels
• Restriction of procedure entry poi nts
• Restriction of i nstruction set

Each i nstruction and memory reference is checked by the hardware to ensure
compl iance with the protection rules prior to execution. For memory references,
checki ng is performed dur ing the address translation process, and is appl ied to both
segmented and paged memory models. Protection parameters are stored in the
segment descri ptors or in the Page Di rectory and Page Table entries.

Type Checking
With each descri ptor, there is a type f ield which is used to d isti nguish between the
d ifferent descriptor formats. This field also specifies the i ntended use of a segment.
For example, the a l lowable types for data segments are:

• Read-Only
• Read/Write

and for code segments:

• Execute-Only
• Execute/Read

The type f ield therefore ensures that segments are only used in ways for which they
are i ntended. For example:

• The code segment (CS) register may only be loaded with the selector of an
executable segment.

• Selectors of executable segments that are not defi ned as readable cannot be
loaded i nto data segment (OS, ES, FS and GS) registers.

• No i nstruction may write i nto an executable segment.

• No i nstruction may write i nto a data segment un less that segment is defi ned as �

Read/Write.

• No i nstruction may read an executable segment un less that segment is defi ned
as Execute/Read.

Limit Checking
The l i m it f ield in each segment descriptor is used by the processor to prevent a

program addressing memory outside the segment through the use of an overly large

offset value. Duri ng address translat ion, the offset val ue specified in the memory

reference is com pared with the l i m it f ie ld, and an exception is generated if the offset

is l arger than the l i m i t for that segment. The l i m it f ie ld i n general prevents errors i n

one program from corrupt ing other programs' code o r data areas.

2-8 Appl ication Design Guide

Privilege Levels
The 80386 i m plements a four-level protection mechanism. Level 0 is the most
privi l eged, and Level 3 is the least privi l eged. The fou r levels m ay be visual ized as
concentric r ings, with the m ost privi l eged l evel i n the center. A l l code and data
segments in the system are ass igned a privi l ege l evel , which is stored in the
segment descriptor. At any one moment, a task executes only on one of the four
levels:

Levei O

Level 1

Level 2

Level 3

This is the most privi l eged l evel , and code executing on this level may
use a l l protect mode processor i nstructions. This level is used by those
routines in an operat ing system which are essential for resource
a l location and contro l . This part of the system is often referred to as the
kernel or nucleus.

This i s the second most priv i leged level and is normal ly used for the
remainder of the operat ing system rout ines and for the Input/Output
support routines. Note that Level 1 is not used by OS/2 2.0.

This level is typical ly used as the appl ication services level . It should be
used for routines that do not belong to the operating system , but should
sti l l be protected from user code, such as comm unications support and
database management programs.

This is the least privi l eged l evel and should be assigned to user
appl ication program code.

A task execut ing at one protection level cannot access data at a more privi leged
level (level 3 cannot access data at Level 1) , nor can i t i nvoke a procedure at a less
privi leged level (level 1 cannot i nvoke Level 3). Thus, both access to data and
transfer of control are restr icted in appropr iate ways. The processor i nterprets the
protection parameters and automatical ly performs al l the checking necessary to
i mplement this protection.

Restriction of Procedure Entry Points
To ach ieve transfer of control between p rocedures on d ifferent privi l ege levels, a
descriptor type cal led a gate i s provided. P rograms wishing to transfer control cal l
the gate by specify ing a segment base address, rather than transferri ng control
d i rectly to the requ i red procedu re.

The fou r types of gates are CALL gates, TASK gates, INTR (Interrupt) gates and
TRAP gates. The routine i nvoked when the gate is called si mply redi rects control to
a new address which contai ns the priv i leged rout ine to be executed .

From the program's point of v iew, th is is no different from transferri ng control to

another code segment, s ince the cal l i ng i nstruction s imply regards the gate as
another segment. However, it effectively isolates the cal l i ng procedure from the

cal led procedu re, and since only the base address is suppl i ed in the cal l i ng

i nstruction, the cal l i ng procedure has no access to any point other than the defined
entry point of the cal l ed procedu re.

Cal l s are verified to ensure that they satisfy two conditions:

1 . The cal l m ust enter the cal l ed procedure at the beg inn ing of that procedure; this
is normal ly ensured by the gate descriptor itself, which suppl i es the necessary
offset to the entry poi nt .

2 . The code segment for the cal l ed procedu re m ust have the same privi lege level
as the gate descriptor.

Chapter 2. The 32-bit OS/2 Programming Environment 2-9

Interrupts

Reserved Instructions
Certai n processor i nstructions are reserved for execution only by the operat ing
system , and may therefore execute only at privi lege level zero. Such i nstructions
i nclude HLT (Halt Processor) , LGDT (Load GOT) , and LTR (Load Task Register) .

I n addit ion, some 1 /0 i nstructions are restricted:

1 . The IOPL f ield i n the EFLAGS register defines whether or not the current task
has the r ight to use I/O-related i nstructions.

2 . The 1 10 Permission Bit Map in the TSS determ i nes whether the current task may
use ports i n the 1 /0 address space.

When the processor is runn ing i n protect mode, i nterrupts are not vectored from the
base of memory. I nstead, each i nterrupt has a code which is used as an i ndex i nto
an Interrupt Descriptor Table (JOT) , the base address of which is contained i n the
I nterrupt Descriptor Table Register. There may be up to 256 i nterrupt and exception -�

codes, generated by devices or by software.

At system i n it ial izat ion, the I DT is loaded i nto memory by the operati ng system , and
its location is stored in the I DT Register. Each descriptor in the JOT specifies the
address of the i nterrupt handler routine which wi l l service i nterrupts with that code.

There are three types of gate descriptors in the J OT:

• I nterrupt Gate Descriptors
• Trap Gate Descriptors
• Task Gate Descri ptors

For i nterrupt and trap gates, the descri ptor i n the IDT contai ns the selector of the
gate, and therefore poi nts i nd i rectly to a procedure that wi l l execute with i n the
current task, si nce the selector with i n the gate procedu re points d i rectly to an
executable segment descriptor in the GOT or the current LOT. This takes place
exactly as if the 80386 was cal l i ng a procedure with i n the current appl ication.

For the task gate however, the selector with i n the gate points to a TSS descri ptor i n
the GOT. I nvoki ng the task gate therefore causes a task switch to occur. There are
certa in advantages to the use of a task gate: , s i nce it a l lows a program to pass
control to a h igher privi lege leve l , and the app l ication may therefore i nvoke
operat ing system routi nes to process i nterrupts and exceptions. In addit ion, the
new task may be g iven its own LOT to prevent it from accessing memory used by
the current task, and the TSS of the current task is automatical ly saved.

However, there are also performance imp l ications i n using task switchi ng . I nterrupt
hand l i ng through task switchi ng requ i res approximately 1 5 m icroseconds on a 20
MHz 80386, whi le switch ing to a procedure with i n the current task takes about 3.6
m icroseconds. But the advantages of havi ng the operat ing system manage
exceptions (smal ler appl ication code, greater portabi l i ty, standard exception
hand l i ng) typical ly outweigh the s l ight performance penalty.

2-1 0 Appl ication Design Guide

Input/Output Processing
1/0 addressing on the 80386 may be performed either by issui ng specific 1/0
i nstructions to the 110 address space, or issui ng general-purpose memory
manipu lation i nstructions to memory-mapped 1/0.

The 1/0 address space is separate from the l i near physical memory and the 1/0
instructions do not go through the segmentation or pag ing hardware. The 1/0
address space is 64KB in size. It may be mapped in various ways; for i nstance,
64KB of i ndiv idually addressable 8-bit ports, 32KB of 1 6-bit ports, 1 6KB of 32-bit
ports, or any combi nation of the above up to the maximum al lowed 64KB. The
processor can transfer 32 bits of data at a ti me to a device located in the 1/0 address
space, using the IN , OUT, INS and OUTS commands.

The 1 10 address space has two protection mechanisms:

1 . The 1 /0 Privi l ege Level (IOPL) f ie ld in the EFLAGS register controls access to the
1/0 i nstructions.

The IN, INS, OUT, OUTS, CLI and STI i nstructions are only al lowed to execute if
the CPL (Current Privi lege Level in the CS descri ptor for the active task) is l ess
than or equal to the value of the IOPL f ie ld.

Only system code (privi lege level 0) can change the IOPL val ue.

2. The 1/0 perm ission bit map in the active TSS controls access to i ndividual ports
i n the 1 10 address space.

Virtual 8086 Mode

There is one bit for each 8-bit port in the 1 10 address space, which means that
the 1/0 perm ission bit map could be up to 64 K i lobits (8 KB). If a task references
an 1/0 port and the corresponding bit is on, the processor signals a general
protection exception. The exception can then be handled by the system software
to i nit iate an exception hand l i ng procedure with i n the current task, or to i n it iate a
new task, which wi l l redi rect the 1/0.

By changi ng bits in the 1/0 perm ission bit map of different tasks' TSSs, an
operati ng system can a l locate ports to tasks and avoid having two tasks use the
same port concurrently.

The 80386 processor supports concurrent execution of one or more 8086 programs
with i n the protect mode envi ronment. There is no longer a need for the processor to
switch back to real mode i n order to s imu late a 8086 machi ne.

An 8086 program runs in protect mode as part of a virtua/ 8086 task. Vi rtual 8086
tasks are able to take advantage of the 80386 hardware support for multitaski ng,
offered i n protect mode. Vi rtual 8086 tasks may execute concurrently with one
another and with other protect mode tasks in the system .

The purpose of the v irtual 8086 task is to form a virtual machine for runn ing
programs written for the 8086 processor. A complete vi rtual machi ne consists of
the 80386 processor support, p lus add itional support from operat ing system
software:

• The hardware provides a set of vi rtual registers (implemented through the TSS),
a vi rtual memory space (the f i rst 1 MB of the 32-bit l i near address space) and
d i rectly executes all i nstructions that deal with these registers and with this
address space. Figure 2-5 on page 2-1 2 shows the way in which the memory
used by vi rtual 8086 machi nes is mapped i nto the system's physical address
space.

Chapter 2. The 32-bit OS/2 Programming Environment 2-1 1

• The operat ing system software controls the external i nterfaces of the vi rtual
machi ne (1/0, i nterrupts and exceptions). In the case of 1/0, the operating �,

system can choose either to emulate 1/0 i nstructions orto let the hardware
execute them d i rectly.

Physical Memory

/
.,.

V8086 Task1

/
V8086 Task2

Page n - /
�

Page 1 I__ Page n

Page 1

DOS

DOS

Figure 2-5. Virtual 8086 Environment-Memory Management

Vi rtual 8086 tasks execute at privi lege level 3 (lowest) and are subject to al l of the
protection checks defi ned in protect mode, thereby preventing an i l l-behaved
appl ication from accessi ng and potentia l ly corrupti ng memory used by other tasks
in the system.

Al l 1/0 is normal ly handled through the 1/0 Permission Map i n the 80386 TSS for
both vi rtual 8086 applications and other protect mode app l ications. This means that
any cal l to 1 10 services generates an exception which is trapped by the 80386 and
may then be handled by the operating system . Any unauthorized cal ls may be
trapped with in the operating system , thus preventi ng an i l l-behaved appl ication from
" hang ing" the system .

I n addit ion, the 80386 pag ing hardware a l lows v i rtual 8086 tasks t o share segments.

Numeric Coprocessor
The 80386 processor may operate i n conjunction with, and uti l ize the features of
either the I ntel 80287 or 80387 numeric coprocessors. When the system is
i n it ial ized, the presence of a numeric coprocessor, and its type if present, is
checked by the 80386. If an 80287 coprocessor is detected, the 80386 automatical ly
converts a l l memory transfers to 1 6-bit formats If an 80387 is detected, it is used i n
32-bit mode, thereby uti l iz ing the fu l l potential of both the 80386 and 80387.

s Note that IBM does not support or recommend the use of 80287 n umeric coprocessors in 80386-based systems. For a l ist of

supported numeric coprocessors for each system unit, readers should refer to the appropriate IBM Product Announcement for that
system u n it.

2-1 2 Appl ication Design Gu ide

Coprocessing
Besides the I ntel 80287 and 80387 numeric coprocessors, the 80386 supports
m ulti p le 80386 processors with in the same system , sharing memory and other
resources. This support is provided through the LOCK prefix i nstruction. When
specified in conjunction with another i nstruction, the LOCK prefix i nstruction
ensures that the locki ng processor has exclusive use of the requested resource.

Only a few 80386 i nstructions can be used with the LOCK prefix i nstruction. It is
typical ly used to prefix i nstructions l i ke BTC (Bit Test and Complement) where it
locks the area of memory defi ned by the desti nation operand for as many cycles as
necessary to update the enti re operand.

In several i nstances, the processor itself automatical ly locks activit ies on the data
bus. For example, when acknowledging i nterrupts, switching tasks, load ing
descri ptors from the LDT to the segment selector and updating the page table
ACCESS and D IRTY bits, the requ i red memory pages are locked since these are
h igh ly critical operations.

The 80386 i ncludes on-chi p memory caching to improve performance. The
processor m ust therefore a l low for the case where data in shared memory is
modified and where that data is currently recorded in a cache on another processor.
In such situations, the 80386 employs an i nterprocess or i nterrupt to let other
processors know when such a change has been made.

This is normal ly done by using one of the physical address pi ns on the chip , and
having the receiving processor i mplement a task switch when it receives this signal .
The task switch clears the system registers, reloads the new descriptors and
i nval idates the memory cache in the processor.

Note that by changi ng the function of one of the addressing pi ns however, the
physical addressi ng capabi l ity of the processor is reduced to 2GB .

OS/2 and the 80386 Processor

OS/2 2.0 is the fi rst version of the OS/2 operating system to take advantage of the
32-bit features of the I ntel 80386 m icroprocessor. Appl ications, subsystems, and the
operating system can uti l i ze the fu l l register set of the 80386, 32-bit i nstructions and
addressing modes, and memory objects larger than 64KB.

I n OS/2 2.0, processes view memory as a l arge l i near address space addressable
by 32-bit offsets from the beg inn ing of memory. That is why the OS/2 2.0 memory
model is known as the "0:32 memory model , " or the f lat memory model . 1 6-bit OS/2
uses the 1 6: 1 6 model for addressing memory, in which a segment and the offset i nto
that segment m ust be specified i n order to address a single byte of memory. The
f lat model effectively h ides all segmentation from the 32-bit programmer, result i ng
i n a portable programm i ng model with m uch h igher performance than a segmented
system can provide.

The high performance of appl ications, subsystems, and the operating system usi ng
the f lat model is derived from several areas. In the segmented or 1 6-bit model ,
segment registers have to be reloaded with selectors every time a different 64KB of
memory needs to be accessed. These selector-load operations are very expensive
i n protect mode on 80X86 processors because of the checking that m ust occur to
ensure segment protection. In the f lat model , a 32-bit offset relative to the base of
the l i near address space is used to address any byte of memory without reload ing

Chapter 2. The 32-bit OS/2 Programming Environment 2·1 3

any selectors; 32-bit programs and subsystems do not use or know about segment
registers.

Another benefit of the f lat model is that there is only one memory model for
appl ications (smal l with no 64KB restriction) i nstead of the many models (smal l ,
medi um, large, huge) used i n previous versions of the OS/2 operat ing system and
all other systems that target 8088 and 80286 m icroprocessors.

Process Address Space
In the 1 6-bit version of the operating system , a process address space consists of a
col lection of segments mapped by a Local Descriptor Table (LOT) . A
byte-addressable segment is the basic unit of al location and sharing. I n the 32-bit
version of the operati ng system , a processes address space consists of a s ing le ,
large r ing 3 segment that the process addresses usi ng the 32;..bit offsets.

The size of the process address space i n OS/2 2.0 is 512MB. Protected memory
reduces this to 448MB. This restriction is requi red to maintai n compatib i l ity with the
1 6-bit version of the operati ng system . Figure 2-6 shows the process address space
in the f lat memory model .

51 2MB

System
(shared by all processes)

Shared Region

DLL Code
DLL G lobal Data
DLL Instance Data
DLL Resources
DLL Runtime Share Data
EXE Runtime Share Data

!
Unallocated Area

f
Private Region

EXE Code
EXE Data
EXE Resources
EXE Runtime Private Data
DLL Runtime Private Data 0 L_ ______________________ _y

Figure 2-6. OS/2 2.0 Process Address Space

2-1 4 Application Design Guide

One process
address space
per process

Notice i n the F igure 2-6 that the system is at the top of each process address space.
Anytime an app l ication attem pts to use an address larger than 512MB or an address
that has not been a l located, an access fault is generated. The process address
space itself is divided i nto private and shared regions, m uch l i ke the LOTs i n 1 6-bit
OS/2. Shared memory a l locations grow down from the top of the address space,
whereas private a l locations grow up from the bottom of the address space. Whi le
the shared and private address spaces grow toward each other, they are not
a l lowed to overlap. Private and shared address spaces have a guaranteed
m in imum size of 64MB. This means that shared addresses may not be al located
with in the fi rst 64MB of the address space, and private addresses may not be
al located with in the l ast 64M B of the 512MB address space.

Memory Objects and Memory Sharing
I n the f lat memory model the unit of memory al location and sharing is cal led a
memory object. Memory objects are:

• not relocatable
• al located i n units of 4KB (page size)
• al igned in l i near space on 4KB (page size) boundaries

I nstead of being divided i nto segments as it is i n 1 6-bit OS/2, memory is divided i nto
memory objects that consist of one or more 4KB pages.

These characteristics i m ply that memory objects m ust be a l located with an upper
bound specified for thei r size, and that memory al location reserves this l i near space
for that obj ect. The size of a memory obj ect is defined when the obj ect is created.
After a memory object is created, its vi rtual address does not grow or shri nk beyond
its i nit ial ly defi ned size.

Because shari ng is done by sharing l i near addresses, a shared memory object's
l i near address range is reserved in a l l process address spaces. I nstance data is
a l located i n one of the shared address regions with private pages behi nd it .
I nstance data is treated as a memory object and is either page or page table
al i gned, depending on the performance characteristics requ i red. F igure 2-7 on
page 2-1 6 shows how memory objects are mapped i nto the process address
spaces provided by the system and shows the rel ationshi p between private and
shared regions.

Memory objects may not be al located at specific addresses duri ng runti me.
However, both private and shared memory objects defi ned i n an .EXE program
module f i le are al located in the private vi rtual address space and may be al located
at specific addresses that are defi ned i n the .EXE fi le format. Because of the 64MB
min imum private address space size, a program module may specify the addresses
of its memory with i n this address space and be guaranteed the l i near addresses wi l l
b e avai lable dur ing program load. Specific a l locations above the fi rst 64MB may not
succeed because the desi red addresses may be occupied by shared memory
objects.

The only way to guarantee a specific l i near address range wi l l be reserved for a
program's use is to define a memory object i n the program module .EXE f i le that
spans the desi red l i near address range. As long as a program module only uses
the address space below 64MB, the system wi l l guarantee the abi l ity to reserve the
specific l i near addresses using this mechanism . This feature does NOT apply to
DLLs.

Chapter 2. The 32-bit OS/2 Programming Environment 2-1 5

4G
System

(shared by all processes)
51 2MB 1-----------

0

Shared Region

instance
data

private
EXE

code
and
data

Process 1

instance
data

private

shared

Process 2

instance
data

runtime
private

code

Process 3

Figure 2-7. Multiple Linear Address Space Management

Addresses
shared by
all processes

Addresses
private to
each process

Reserved l inear address ranges are i nval i d to address unti l memory has been
com mitted for the address range. The com mitment of memory to an address range

�

makes the address range val i d to access, the decommitment of memory from an �

address range makes the address range i nval i d to access. The reservation of a
l inear address range does not g uarantee that memory resources wi l l be avai lable to
com m it to the reserved address range.

The backing storage for a range of pages may be committed and decommitted

with in a p reviously al located private or shared memory object. This al lows an

app l ication to make specific address ranges with in an object val id or i nval id as the

appl ication sees fit. Comm itment and decommitment always take place on a page

g ranularity. To assist an app l ication or l i brary in i ts management of committed

memory, the system can p rovide the system page size through the DosQuerySysl nfo

function.

The operating system does not use the virtual address as the protection domain ,
and therefore never checks to ensure that an argument data structure resides with in
a s ingle private or shared memory object. I n general passing an argument that
crosses mu lt ip le memory objects is considered poor behavior and should be
avoided. Also the locking mechanism provided for device drivers for DMA does not

2-1 6 Application Design Guide

allow a device driver to lock memory that crosses mult ip le memory objects.
Therefore even though the system does not prevent an argument from spanning
mu lt ip le objects, an API cal l may fai l if it does.

Page Attributes and Memory Access Protection
Page-level memory protection is one of the significant differences between the
32-bit f lat memory model and the 1 6-bit segmented model . In the 1 6-bit segmented
mode l , protection exists on a per-segment basis. Access and l i mit checks occur on
each segment selector l oad. With i n the f lat model , however, because an
app l ication's memory objects exist with i n the same segment, the I ntel segment
protection semantics are bypassed. Page-level protection is used to manage the
memory with i n a process's address space, but only for DLLs.

When al locat ing memory using the f lat model , an appl ication can control the
attri butes of the pages with i n the range of addresses spanned by the a l located
memory object. The commitment of memory to an address range may also be
contro l led by the appl ication so that specific address ranges with i n a memory object
can be made val id or i nval id as the appl ication sees fit. If an i nval id page is
addressed, an access fault occurs. Commitment, decommitment, and changi ng of
the attri butes of a page are done on a page granularity. To assist appl ications and
l i braries in thei r management of comm itted memory, OS/2 2.0 provides the system
page size (4KB on an 80386) . The fol lowing summarizes the attri butes that can be
associated with a s ingle page or group of pages with i n a memory object

COMMIT

DECOMMIT

EXECUTE

READ

WRITE

GUARD

Page is committed with backing storage.

Page is not committed and access w i l l cause an access fault

Execute access to the comm itted page is al lowed.

Read access to the committed page is a l lowed.

Write access to the committed page is a l lowed.

The com m itted page is a guard page.

On the 80386, execute and read access are equivalent, and write access i m pl ies
both read and execute access. The guard page attri bute is used to faci l i tate

automatic stack growth and stack l i m it checking, but may be used by an appl ication
in other data structures where appropriate. Because a memory object can contain
some committed and some decommitted pages, "sparse" memory objects can be
used with the f lat memory model .

Whi l e the pag ing feature of the 80386 is used to support the f lat model and m ult i p le
DOS address spaces, it also al lows OS/2 2 .0 to provide a d ifferent ki nd of memory
overcommitment than previous versions of the operat ing system . I n 1 6-bit OS/2,
segment swapping is used to keep the system running in memory-stressed
conditions. Due to the 110 performance of most f ixed disks, however, segment
swapping does not perform wel l enough to provide generic v i rtual storage on
demand. The 80386, in com parison, provides pag ing . From a system perspective, a
lot of storage can be vi rtual ized on f ixed disk med ia at a much lower 1/0 cost
because the size of a page is fixed and is smal ler than that of a segment. The
system also can do a better job of tracki ng memory usage because memory pag ing
algorithms operate on a page granularity i nstead of a segment granu larity. For
these reasons, OS/2 2.0 is a demand-paged vi rtual storage system which is
designed so that the system runs acceptably i n overcommitted situations.

Chapter 2. The 32-bit OS/2 Programming Environment 2-1 7

Compatibil ity with 1 6-Bit OS/2
OS/2 2.0 runs al l 1 6-bit OS/2 appl ications and subsystems. To do this, 1 6-bit and
32-bit modules reside s imultaneously. For 1 6-bit and 32-bit modules to coexist,
however, memory m ust be addressable from each model . This means that a
h igh-performance mechanism for convert ing 1 6-bit addresses to 32-bit addresses
and vice versa is needed. The technique used to deal with address conversions
between the segmented and f lat memory models is cal led LDT tiling.

A t i led LOT contai ns at most 8 192 descriptors where each descriptor maps a 64K
region of the process address space and the regions mapped by these descri ptors
are contiguous i n the l i near address space. The result is that a s ingle LOT can map,
at most, 5 12MB of contiguous l i near address space i n the f lat model . (This is why
OS/2 2.0 restricts the size of the process address space to 512MB.)

Th is ti l i ng of the LOT creates an address mapping between the 16 : 16 address and
the 0:32 address for any byte of memory in the process address space. Figure 2-8
shows how 1 6-bit segments are a l located i n the process address space and mapped
i nto the LOT.

Memory ObJect Name A B
Segment Size 1 00 5 1 20

Nu=�of
1 2

16:16
7:0 F:O Addressing_

0:32
OH 1 0.000H Addressing

30,000H

Local Descriptor Table
1'>AIIt'Ai:!@tf:p(Jflf1IJ!I:JJJ 20,000H Base Address Limit \Selector

--· · \ 1 F

10,000H 1 7

.___ F

20.000H

10.000H

OH

64K-1

51 19

99

•
Segment Reserved Invalid

Pages Pages

Figure 2-8. Tiled Address Space Next to LDT

c
64K
16

1 7:0

20.000H

To make this address mapping work, the LOT is managed differently i n 32-bit OS/2
than i n 1 6-bit OS/2. I n 1 6-bit OS/2 the LOT selectors for private and shared memory
are i nterspersed i n the LOT. The LOT i n 32-bit OS/2 is managed sparsely; private
selectors are a l located from one end of the LOT whi le shared selectors are
al located from the other. This does not affect the compati b i l i ty of 1 6-bit modules,
because thei r segmented nature makes them relocatable by default.

2-1 8 Application Design Guide

The memory manager puts a l l 1 6-bit API m emory requests on 64KB l i near
boundaries and sets up the LOT to access the memory as described. This
guarantees that the system can satisfy 1 6-bit OosReal locSeg requests up to the
64KB maximum. Notice i n F igure 2-8 that each 1 6-bit segment takes up at l east one
page of v irtual and physical memory, as wel l as one page on the swap device.
Therefore, 1 6-bit appl ications that create many smal l segments will fragment the
pages that constitute the address space. More memory is consumed than when the
same appl ication is run on 1 6-bit OS/2, although part of this m emory fragmentation
effect is reduced because the system swaps pages i nstead of segments. The
trade-off is necessary, however, to provide a h igh-performance mechanism for
address sharing between the two different memory models.

The fol lowing API functions are used to convert addresses between the 1 6-bit and
32-bit models:

• OosSeiToFiat
• OosFiatToSel

Note: See " OosSeiToFiat" on page 3-1 7 and " OosFiatToSel " on page 3-17 for
more i nformation on using these AP• functions.

LOT ti l i ng also provides a mechanism for 32-bit appl i cations to uti l ize 1 6-bit OLLs.
32-bit modules can quickly create 1 6: 1 6 al iases for memory objects. Because the
al i asing is formula-based, a mappi ng layer can be provided for 1 6-bit OLLs. A
function that performs this mapping is cal led a "thunk. "

Chapter 2. The 32-bit OS/2 Programming Environment 2-19

Summary

The 80386 is a powerful 32-bit microprocessor that forms the basis of OS/2 2.0. It
consists of six dedicated units connected by 32-bit buses operati ng in paral le l . This
enables up to six different i nstructions to be held concurrently with i n the chip. I n
addit ion, the 80386 processor contains eight 32-bit reg isters (which are compatib le
with 8086 and 80286 processors) and six 1 6-bit registers. Other features of the 80386
processor i nclude:

• The abi l ity to operate in two addressing modes: real and protect. In real mode,
the 80386 operates as a 1 6-bit processor. In protect mode, the processor can
take advantage of 32-bit capabi l it ies, such as the abi l i ty to address very large
memory in a s ingle segment and to m anage memory as pages, not as segments.

• The abi l ity to support a m ultitasking envi ronment.

• A greater degree of protection for tasks executing with in the system . The types
of protection are type checking, l im it checking, privi lege l evels , restriction of
procedure entry poi nts, and restriction of the i nstruction set.

• Improved i nterrupt hand l i ng .

• The abi l ity to perform 1 /0 addressing either by issui ng specif ic 1 /0 i nstructions to
the 110 space, or issuing general-purpose memory manipu lation i nstructions to
memory-mapped 1/0.

• Support for concurrent execution of one or more 8086 programs with i n the
protect mode envi ronment.

• The abi l ity to operate in conjunction with, and uti l ize the features of either the
I ntel 80287 or 80387 numeric coprocessor.

OS/2 2.0 takes advantage of the 32-bit features of the 80386 processor. I t uses the
32-bit i nstruction and addressing modes of the 80386 processor to i m plement a flat
memory model The f lat memory model provides the fo l lowing benefits:

• A l arger process space (51 2MB)

• Division of memory i nto memory objects i nstead of segments. Memory objects
consist of one or more 4KB pages.

• Page-level protect ion.

OS/2 2.0 maintains compatib i l i ty with previous version of the operat ing system . This
makes it possib le for 1 6-bit and 32-bit modules to coexist; however, memory m ust
be addressable from each model . The technique used to convert between 1 6-bit and
32-bit addresses is cal led LDT tiling.

2-20 Application Design Guide

Chapter 3. The Application Development Environment

This chapter d iscusses:

• The types of app l ications that can run under OS/2 2.0

• The programm i ng models for OS/2 2.0 appl ications

• The program development envi ronment for OS/2 2.0

• The issues the programmer faces in m igrating to the 32-bit OS/2 programming
model

Applications Running Under OS/2

© Copyright IBM Corp. 1992

Two forms of i nput and output are supported with 32-bit functions: the C i nterface
(producing command-l i ne-based appl ications that can be run i n a text window or fu l l
screen) and PM appl ications. Appl ications that must create graphics, handle
keyboard or mouse i nput, or i ntercept or modify device i nformation should do so
with in the context of the PM functions. The 32-bit PM programming model is the
preferred programm i ng model for OS/2 2.0 appl ications. Although OS/2 2.0 can
execute any app l ication developed for version 1 .X of the operat ing system, only
32-bit PM appl ications can take fu l l advantage of the graphical user i nterface and
the 32-bit features of OS/2 2.0. The types of appl ications supported by OS/2 2.0 are
shown i n Figure 3-1 and Table 3-1 on page 3-2.

I PM i l
Applications I J -

/

p tl
R I �{1
O N I
G T "''

Windowable
Applications

O R E . r S A R
2 M F

M A · �-------f
I C

N E
G

Full Screen r
Applications

._________,-- c_______y

/

...

DOS/Windows l lr-------+1
Applications �

1/

Figure 3-1 . OS/2 2.0 Application Types

/ f---
P
-

r

-

e

-

se

-

n

-

ta

-

t

-

io
_
n
_

M
_
a

-

na
_

g
_

e
_
r
--6

111' Jltll
'� 11

/

G raphics

Window
Manager

Control

Memory
Management

Exception
Management

/

I P F

Print
Subsystem

Prog ram

Tasking I PC

File
System

I MVDM Support

I
f ��·

;±

3-1

Table 3-1 . OS/2 2.0 Application Types

Full-screen Runs in non-PM session
Predomi nantly text-based
Di rect hardware access
May use hardware text modes
M ay use restricted PM functions
DOS programm i ng model

Wlndowable Runs in a PM session
Text only
Hardware access usi n g OS/2 APis
M ay use hardware text modes
May use restricted PM functions
DOS programm i ng model

PM Runs in a PM session
M ay use advanced text capabi l it ies
M ay use PM g raphics functions
PM programm i ng model

DOS/Windows Runs in DOS (V86) session
Text and g raph ics
D i rect hardware access
M ay use hardware text modes
DOS programm i ng model

Full-Screen Applications
Ful l -screen applications do not run in the PM wi ndows. A fu l l -screen appl ication is
any OS/2 appl ication that does not create a PM message queue. In other words, it is
an app l ication that does not rely on the PM mouse and keyboard processi ng for
input.

Most fu l l -screen appl ications use the Dos functions to perform i nput, output, memory
management, and other activit ies . Ful l -screen appl ications also commonly use the
standard-i nput, standard-output, and standard-error f i les created for them when they
start. They can also use PM functions that do not requi re a message queue.

Ful l -screen VIO appl ications use the video (Vio) , mouse (Mou), and keyboard (Kbd)
functions to take com plete control of the screen and i nput devices. Taking complete
control is useful for programs that provide thei r own windowi ng system or thei r own
h igh-speed graphics package. Although the video, mouse, and keyboard functions
are not avai lable as 32-bit functions under OS/2 2.0, fu l l -screen VIO appl ications can
sti l l use some of the 32-bit features of OS/2 2.0.

Windowable Applications
A wi ndowable appl ication is a fu l l -screen appl ication that also can run in a PM

wi ndow. Although the appl ication runs in a wi ndow, it does not create the wi ndow.

I nstead, the system creates the wi ndow and provides the i nput and output to the

appl ication just as if it were runn ing in a fu l l -screen session. A fu l l -screen

appl ication can run in a wi ndow only if it does not use functions that d i rectly access

the devices that PM controls. For example, an appl ication that attempts to retrieve

the address of the video buffer or to .change video modes cannot be made

wi ndowable.

3·2 Appl ication Design Guide

PM Applications

Wi ndowable appl ications do not take d i rect advantage of menus, icons, screen,
mouse, or other features avai l able i n PM. They are usual ly com mand-l i ne programs
or si m ple text programs, and they are often ported from operating systems that have
text-based i nterfaces, such as the C l i b rary i nput-and-output rout ine, pri ntf.
Windowable appl ications can use some of the 32-bit features of OS/2 2.0.

A PM appl ication is any OS/2 appl ication that creates a message queue. Because a
window is the only means a PM appl ication has to receive input and display output,
PM appl ications create one or more windows to i nteract with the user.

All OS/2 PM appl ications have essent ial ly the fol lowing structure:

• A main procedure
• One or more window procedures
• Optional functions to support the mai n procedure and/or the window procedures

Figure 3-2 shows an PM appl ication template.

Figure 3-2. PM Application Template

Chapter 3. The Appl ication Development Environment 3-3

Because nearly all PM appl ications create and use windows, the main function
carries out the same basic tasks in most appl ications. The typical main function
does the fol lowi ng:

• Register each thread that cal ls PM functions. Threads are registered with the
system by cal l i ng the Win ln it ial ize function. This function creates an anchor
block and returns an anchor-block handle that the thread can use in subsequent
functions.

Note: An anchor block is a data area reserved for i nternal PM resources for
each thread that makes cal ls to PM functions. This data area is defi ned and
managed by PM. It i ncl udes i nstance data in which to store the process's
envi ronment and storage for error messages.

• Create the message queue by usi ng the WinCreateMsgQueue function. This
function returns a queue handle that can be used in subsequent functions. When
the queue is created, the appl ication can register a window class, create a
wi ndow, and start the message loop.

• Enter the mai n message loop. The appl ication waits there for messages to
appear in the queue, retrieves them, and dispatches them, as appropriate, to its
wi ndows. When the user or system chooses to terminate an appl ication, a
WM_QUIT message is used to trigger an exit from the message loop.

• Carry out various termination activities, i ncluding destroying windows, releasing
memory, destroying message queues, c losing fi les, and severi ng connections
with the shel l and other appl ications.

Appl ications written for PM have full access to the complete set of user i nterface
tools: menus, icons, scro l l bars, and so on, and often present a WYSIWYG ��.

(what-you-see-is-what-you-get) view of the i r data. PM app l ications often make
extensive use of a mouse and display and have access to a l l the 32-bit features of
OS/2 2.0.

DOS/Windows Applications
Most DOS/Windows .. appl ications can be run in an OS/2 2.0 DOS session, in the
vi rtual 8086 mode of the 80386 m icroprocessor. The vi rtual 8086 mode provides a
h igh degree of 1/0 and memory protection, so that the crash of a DOS/Wi ndows
appl ication running i n an OS/2 2.0 DOS Session does not crash the enti re operati ng ----..

system as wel l . DOS/Wi ndows appl ications can be run i n fu l l-screen or windowed
DOS Sessions. M ulti p le DOS/Wi ndows appl ications can run concurrently, with
background DOS/Wi ndows appl ications not suspended, but m ultitasked l i ke OS/2
appl ications. DOS/Wi ndows applications can also comm unicate with PM through
the system cl i pboard, and to other appl ications through named pi pes.

3·4 Appl ication Design G uide

� Programming Models

OS/2 2.0 appl ications can be further classified accord ing to the manner in which
they are bui lt , as shown in Tabl e 3-2.

Table 3-2. OS/2 Version 2.0 Programming Models

Pure 1 6-Bit Written in a 1 6-bit l anguage
Built using 1 6-bit tools
1 6-bit EXE format

Mixed 16-Bit Written in 1 6-bit C
Bui lt usi n g 1 6-bit and 32-bit tools
32-bit EXE format

Pure 32-Bit Written in 32-bit C
Bui lt usi n g 32-bi t tools
32-bi t EXE format

Mixed 32-Bit Written in 1 6-bit and 32-bit C
Bui l t using 1 6-bit and 32-bit tools
32-bi t EXE format

A pure 1 6-bit OS/2 appl ication can be run on a 1 6-bit or 32-bit OS/2 system . M ixed
1 6-bit, m ixed 32-bit, and pure-32-bit app l ications can be run only on a 32-bit OS/2
system.

Pure 1 6-Bit Applications
As shown in F igure 3-3 on page 3-6, pure 1 6-bit OS/2 appl ications:

• are compi led with a 1 6-bit C compi ler
• use 1 6-bit C runtime l ibraries
• m ay be a smal l /med ium/large/huge model
• use 1 6-bit OS/2 API
• use 1 6-bit OS2 .H i nclude f i le
• are l inked with 1 6-bit version of OS2.L IB cal l ed OS2286.LIB
• are l inked with 1 6-bit l inker
• have the 1 6-bit EXE format

Chapter 3. The Application Development Environment 3-5

1 6-Bit
Include

Files
X.DEF

Figure 3-3. Building a Pure 16-Bit Application

These appl ications can be fu l l -screen , wi ndowable, or PM appl ications. They can
run under the 1 6-bit version of the operati ng system , as wel l as under the 32-bit
version of the operating system (that is, on machines with 80286 or 80386
microprocessors) . However, they cannot take advantage of the features of the 32-bit
programm i ng envi ronment. They use the 1 6-bit segmented memory model , and,
therefore, do not have access to the enti re 32-bit vi rtual address space.

M ixed 1 6-Bit Applications
As shown in Figure 3-4 on page 3-7, mixed 1 6-bit OS/2 appl ications:

• are compi led with a 1 6-bit C compi ler
• use 1 6-bit C runtime l i braries
• may be a smal l/medium/large/huge model
• use 1 6-bit OS/2 API
• may use 32-bit OS/2 API
• use 1 6-bit OS2.H i nclude fi l e
• are l i nked with 1 6-bit version of OS2.L IB cal led OS2286.L IB
• are l i nked with 32-bit l i nker
• have the 32-bit EXE format

3·6 Appl ication Design Gu ide

1 6-Bit ·

Include
Files

Y.C

32-Bit :

Include
Files

X.DEF

OS2286.LIB

1 6-Bit
APis

Y.OBJ

Figure 3-4. Building a Mixed 16-Bit Application

These appl ications can be fu l l-screen, wi ndowable, or PM appl ications. Li ke pure
1 6-bit OS/2 appl i cations, they do not have access to the enti re 32-bit vi rtual address
space. Because they have a 32-bit EXE format, they m ust run under the 32-bit
version of the operati ng system . This enables them to run faster and more
efficiently.

Pure 32-Bit Applications
As shown in F igure 3-5 on page 3-8, pure 32-bit OS/2 appl ications:

• are compi led with a 32-bit C compi ler
• use 32-bit C runt ime l i braries
• are small model only
• use 32-bit OS/2 API
• use 32-bit OS2.H i nclude fi le
• are l i nked with 32-bit OS2386.LIB
• are l i nked with 32-bit l i nker
• have the 32-bit EXE format

Chapter 3. The Application Development Environment 3-7

32-Bit
Include

Flies
X.DEF

32-Bit
Definition

File

OS2386.LIB

32-Bit
APia

LIBC.LIB

32-Bit C
Runtime
Library

Figure 3-5. Building a Pure 32-Bit Application

These appl ications can be wi ndowable, or PM appl ications. Because they have a
32-bit EXE format, they can run only under the 32-bit version of the operat ing
system . Pure 32-bit appl ications i ncorporate the 32-bit, f lat memory model and
memory protection mechanisms which are common on a wide range of computer
i ndustry hardware platforms. This feature a l lows pure 32-bit appl ications to be
more easi ly ported to other p latforms.

M ixed 32-Bit Applications
As shown in F igure 3-6 on page 3-9, mixed 32-blt OS/2 appl ications:

• are compi led with a 32-bit C compi ler with the variables a l igned in such a way
that they can be passed to 1 6-bit funct ions (with I B M C Set/2*, for example, you
would use the /Gt + f lag on the command l i ne).

• use 32-bit C runtime l i braries
• are smal l model only
• use 32-bit OS/2 API
• may use 16-bit OS/2 API
• may use only 1 6-bit API or 32-bit API in a s ing le .C fi le, but not both because of

i nclude f i le support
• use 32-bit OS2.H i nclude f i l e
• are l i nked with 32-bit version of OS2386.L IB
• are l i n ked with 32-bit l i nker
• have the 32-bit EXE format

3·8 Application Design Guide

Y.C

1 6-Bit �
APis .

INCL_1 6

X.OBJ

LIBC.LIB

Figure 3-6. Building a Mixed 32-Bit Application

These appl ications can be fu l l -screen, windowable, or PM appl ications. Because
they have a 32-bit EXE format, they can run only under the 32-bit version of the
operating system . Mixed 32-bit OS/2 app l ications can access the enti re 32-bit
vi rtual address space.

The Program Development Environment

OS/2 2.0 provides different names and entry points for al l 1 6 and 32-bit APis.
Therefore, it is possib le to mix 1 6- and 32-bit code with in a s ing le .EXE module. It is
also possib le to call 32-bit AP is from a 1 6-bit C program (mixed 1 6-bit programming
model) , and to cal l 1 6-bit APis from a 32-bit program (mixed 32-bit programming
model) . I n order to support this, two d ifferent l i braries are provided with OS/2 2.0.

OS2286.LIB

OS2386.LIB

This l i brary l i nks to 1 6-bit pure/mixed appl ications. It contains Jinks
to the 1 6-bit ord i nals using the 1 6-bit DosXXX names, and links to
the 32-bit API entry points using the 32-bit Dos32XXX names.

This l i brary l i nks to 32-bit pure/mixed appl ications. It contains links
to the 32-bit ord inals using the the DosXXX or Dos32XXX names,
and l i nks to the 1 6-bit APis using the Dos1 6XXX names.

Linking with these l i braries a l lows the 1 6- and 32-bit versions of a g iven API to be
cal l ed from the same .EXE module. The names used i n the appl ication must match
these names by l i nk time. However, l anguage pre-processors can be used to hide
some of this from the app l ication programmer.

Chapter 3. The Application Development Environment 3-9

When you compi le a program, use the appropriate compi ler option to ensure that a l l
variables defined i n that comp i lation un i t are guaranteed not to cross 64K
boundaries. The option that d i rects your com pi l er to use 1 6-bit versions of the
malloc fami ly functions (cal loc, mal loc, real loc, and free) should be used as wel l .

Note: When you use the 1 6-bit enabl i ng option, data items larger than 64K i n size
wi l l be a l igned on 64K boundaries, but w i l l also cross 64K boundaries.

Include File Architecture
Only 1 6-bit APis or only 32-bit APis can be used in a s ingle C module. To
understand why, let's look at the OS/2 i nclude f i le layout. The OS2.H f i le i ncl udes
OS2DEF.H before i ncluding the appropriate BASE and PM header f i les. OS2DEF.H
contains typedefs and macros for most of the system related objects, structures, and
data types used when accessi ng the APis. Programmers should use the same type
names from the i nclude fi les in both the 32-bit and 1 6-bit envi ronment. For example,
when the code contai ns:

PSZ buffer = " hell o " ;

i n the 1 6-bit system , OS2DEF.H changes i t to:

char far *buffer = " hel l o " ;

However i n the 32-bit system the declaration wi l l be converted to:

char *buffer = " hel l o " ;

because of the f lat memory model .

OS/2 2.0 provides support for the fol lowing 1 6-bit subsystems:

• Vio (video functions)
• Kbd (keyboard functions)
• Mou (mouse functions)
• Mon (monitor functions)

If you wish to use any other 1 6-bit API functions in your 32-bit code, you m ust
provide the appropriate header fi le (s) . The template for the OS2.H i nclude f i le is
shown in F igure 3-7.

Figure 3-7. Template for the OS2.H Include File

3-1 0 Application Design Guide

C Compiler Support
The IBM C Set/2 compi ler provides the capabi l ity of cal l i ng 1 6-bit API functions and
using 1 6-bit far pointers (16: 1 6) from f lat model 32-bit appl ications. This is done by
provid ing three new keywords: _Seg16 , _Far16, and _Pascal . The _Seg1 6 keyword
is used to declare 16 : 16 pointers, whi le the _Far1 6 and _Pascal keyword are used to
declare 1 6-bit far function references and to generate the 1 6-bit far cal l i ng sequence
in 32-bit code.

The samples that fol low were written using IBM C Set/2 keywords. If you use a
different com pi ler, use the keywords your compi ler employs to achieve the same
effect.

To declare a poi nter as 1 6: 1 6, you would use the _Seg1 6 keyword:

char * _Seg16 foo ;

(Notice that _Seg1 6 comes after the *, not before.) This declares too to be a
segmented pointer. I n any operations i nvolvi ng the pointer, the poi nter is converted
to a f lat pointer prior to the operation and converted back i nto a segmented poi nter
(if necessary) after the operation is com plete. For example, for something l i ke

foo[9]= ' x ' ;

the poi nter too is fi rst converted to a f lat pointer, then "x" is placed i nto the fi rst
element, rather than using the segmented pointer d i rectly. This means that a 1 6-bit
routi ne can use the variable too d i rectly, si nce the val ue in the pointer is stored i n
segmented form al ready.

Flat pointers also can use segmented pointers. When a f lat pointer is passed to a
1 6-bit routi ne, the poi nter is automatical ly converted to 16 : 16 as it is passed.

Note that poi nters that are declared as _Seg1 6 are stored as 1 6: 1 6, but dereferenced
as 0:32. Si nce a l l 1 6-bit objects are pseudo-ti led, this i ncreases protection whi le
sacrifici ng speed.

Output parameters are converted. If a 32-bit appl ication cal ls a 1 6-bit API, and the
API returns a 16 : 16 poi nter, the output pointer is converted to the 0:32 format.

Regardless of parameter conversions, the C compi ler generates the 1 6-bit cal l i ng
sequence when encountering a "_Far1 6 _Pascal " function cal l type. The compi ler
cal ls a l i brary function to switch to a 1 6-bit stack, push parameters and do
parameter conversions, execute the 1 6-bit cal l , switch back to the 32-bit stack, and
return to the 32-bit appl ication. F igure 3-8 on page 3-1 2 i l l ustrates the stack frame
generated for the VioXXX example.

Chapter 3. The Appl ication Development Environment 3·1 1

Library Support

SEL(buffer)

OFF(buffer)

SEL(flag)

OFF(flag)

LO(cnt)

cs

IP

Figure 3-8. Stack frame for VioXXX Example

C Set/2 has two sets of .L IB fi l es: a 1 6-bit and a 32-bit version. The major d ifference
between the two l ibraries is how the default name of an API function is handled, that
is , what an API function reference is mapped to.

M ixing 1 6-Bit and 32-Bit Code

Thunking

OS/2 2.0 supports 32-bit programs, 1 6-bit programs, and mixed programs (programs
that conta in both 1 6-bit and 32-bit code} . This section deals with m ixed program
development.

All 32-bit OS/2 code can cal l 1 6-bit OS/2 code by conform i ng to the existing
conventions in 1 6-bit OS/2's segmented dynamic l i nk model . The only 1 6-bit
modu les a 32-bit app l ication should use are the VIO, KBD, MOU, or other 1 6-bit
m odu les for which suppl iers have not provided 32-bit support. 32-bit appl ications
that use 1 6-bit functions may not run as fast as they would if they used 32-bit
functions. 1 6-bit OS/2 code can also uti l ize 32-bit code by conformi ng to the 32-bit
conventions. Code that is used to "g l ue" 16 and 32-bit routi nes is commonly known
as a thunk. A thunk can reside i n an appl i cation or in a l i brary module. A 32-bit
thunk binds 32-bit code to 1 6-bit code. A 1 6-bit thunk binds 1 6-bit code to 32-bi t
code. F igure 3-9 on page 3-13 i l l ustrates how 1 6- and 32-bit appl ications and
subsystems i nteract through the use of thunks.

3-1 2 Application Design Guide

' �

1 6-Bit

Application

/ A /

I
/

1 6-Bit I� 32-1 6

Subsystem Thunks

Figure 3-9. 16 to 32-Bit Application/Subsystem Interactions

32-Bit

Application

A·· f.
�

I n OS/2 2.0, the operating system suppl ies an i nterface between 1 6-bit and 32-bit
code, cal led a thunking layer. The purpose of the thunking layer is to convert code
and memory objects from 1 6-bit to 32-bit and back. This conversion is transparent
to the cal lee and cal ler.

1 6-bit
Entry
Point

/

32-bit
Entry
Point

I Thunk32

1 6-bit API

32-> 16 Model

Figure 3-10. Thunk Models

::· :

32-bit
Entry
Point

/

1 6-bit
Entry
Point

l Thunk1 6

32-bit API

1 6->32 Model

Most of the system-suppl ied thunks are of the 32-+ 1 6 variety. A 32-+ 1 6 thunk m ust
perform the fol lowi ng functions when cal l i ng 1 6-bit code from 32-bit code.

1 . Save the FLAT context

The thunk should preserve the current FLAT context, which i nvolves saving the
current OS and SS selectors. The values in EBX, ESI , and EDI also need to be
preserved because the 1 6-bit PM conventions do not preserve them. Also, the
32-bit cal l i ng convention saves EBX, ESI , and EDI . The 1 6-bit cal l i ng convention
only saves EDI and ESI , so EBX would be lost.

You should also save EBP, si nce the 1 6-bit function only uses BP.

2 . Copy the parameters

The parameters (or cal l frame) need to be reconstructed. Parameters may need
to be a l igned on the stack. The f lat memory env i ronment usually pushes 32-bit,
DWORD sized items. The segmented memory envi ronment uses 1 6-bit, WORD
sized items.

Copying parameters consists of:

• Checki ng for boundary crossings
• Converti ng pointers
• Pushi ng the parameters i n the proper order

Chapter 3 . The Application Development Environment 3-1 3

3. Convert the stack to 1 6: 1 6

The 1 6-bit function expects the stack to b e addressable by SS:SP and B P . The flat
memory envi ronment is passing i n a ESP, EBP addressable stack. The stack
poi nter, SS:SP is created by cal l i ng the API function, DosFiatToSel on the current
ESP. (See " DosFiatToSel " on page 3-1 7 for more i nformation on DosFiatToSel .)

4. Cal l the 1 6-bit routine

The thunk then executes a far 16 : 16 cal l to the target routine.

5. Restore the f lat context

The far 1 6: 1 6 cal l wi l l return to the thunk when the cal l is complete. The thunk
needs to restore al l segment registers: SS is retrieved, the OS val ue is restored
i nto both DS and ES, and ESP and EBP are both restored . The saved registers
ED I , ESI and EBX are also restored.

Note: It is necessary to convert any parameters upon returni ng .

6. Return to cal ler

A 1 6-+32 thunk m ust perform the fol lowing functions when cal l i ng 32-bit code from
1 6-bit code.

1 . Save current context

Al l the normal segment registers are about to be destroyed, so they should be
saved; SS and OS should be saved, and ES if needed. The extended registers
wi l l be saved by the cal lee.

2 . Copy the parameters

Al ign parameters i nto DWORD sized parameters, if necessary.

3. Setup a f lat context

The 32-bit rout ine expects SS:ESP as the stack selector. Use the DosSeiToFiat
API function on SS:SP to create an ESP. (See " DosSeiToFiat" on page 3-1 7 for
more i nformation on DosSeiToFiat.) Then load the f lat selectors i nto SS, OS, and
ES.

4. Cal l the 32-bit routine

Perform a near (0:32) cal l to the 32-bit function.

5. Restore saved context

Restore SS:SP and OS.

6. Return to cal ler

One of the major goals of OS/2 2.0 is to provide compatib i l ity between 1 6-bit and
32-bit versions. Thunks provide this compati b i l ity, by deal i ng with the fol lowing
issues:

• OS/2 Memory Layout

OS/2 2.0 uses a f lat l i near (0:32) addressing model . The 1 6-bit OS/2 code uses a
selector:offset (16 : 16) addressing model . The thunk layer must convert the
addresses between the two models.

• Different Parameter Sizes

The 32-bit version of the operat ing system uses 32-bit (LONG or DWORD) val ues
as the basic data type. The 1 6-bit version uses a 1 6-bit (SHORT or WORD) val ue
as the basic data type. The thunk layer m ust convert between WORD and
DWORD length data.

3-14 Application Design Guide

� ..

The 32-bi t stack is DWORD-based. The 1 6-bit stack is WORD-based. The thunk
l ayer must make a new copy of the parameters on the stack and real ign when
needed.

• 64K Segment Boundary Problem

1 6-bit code can only address up to 64K i n any one segment. The only l i m it on
32-bit code is the maximum size of the l i near address space (4GB) . This creates
a problem when a 32-bit data item is l arger than 64K and is being passed to
1 6-bit code. The thunk l ayer m ust m ake the data item addressable by the 1 6-bit
routine.

• Different Cal l Models

The 0:32 addressing model uses a near cal l for all functions. The 16 : 16 model
uses a far cal l for al l functions. A problem arises when a thread of one model
tries to cal l a procedu re of the other model . The two models push different
return addresses on the stack. The thunk layer m ust produce the correct calling
sequence.

32-Bit OS/2 Memory Layout
This section briefly describes the memory layout for OS/2 2.0, and how the
segmented memory envi ronment is mapped to the f lat memory envi ronment.

Flat Memory
The 32-bit addressing of OS/2 2.0 is accompl ished on the 386 by creating a very
l arge segment (up to 4GB in size) , and using a l l near addresses i nside this l arge
segment. A data and a code segment are mapped to this large address space, with
thei r l i m its set to 4GB (Oxfff . . .), as shown in Figure 3-1 1 . The selectors for th is are
a l located in the g lobal descriptor table (GOT), and are cal led the "flat" selectors.

GOT
Data n Code

Unear address 0

Figure 3-1 1 . Mapping the flat Address Space Using GDT Selectors

Al l addresses i n the f lat memory model are 32-bit offsets i nto these two segments.

The base addressrs of the two selectors are always zero, and therefore the flat

offsets are the same as the l inear addresses.
I

Tiled Memory I
I n order for OS/2 2.0 to be compatib le with 1 6-bit appl ications, the 1 6-bit

envi ronment can be mapped to the 32-bit envi ronment in such a way that addresses

can be quickly converted between the two envi ronments.

Chapter 3. The Application Development Environment 3-15

This mapping is accompl ished by a technique cal led tiling. A t i led local descriptor
table (LOT) contains up to 8 192 descriptors, where the segment base address i n
each descriptor i s a m ulti p le of 64KB. I n this manner, each descri ptor points to a
64KB region of memory. Contiguous descriptors map i nto a contiguous l i near
address space. Because the LOT only holds 8 192 selectors, the max imum address
al lowed i n the ti l ed memory region is 51 2MB. F igure 3-1 2 shows the way i n which
memory addresses with i n the ti l ed LTD are mapped i nto the process address space.
This t i led region of memory is cal l ed the compatibility region.

Process Address Space

Memory bt::iJ8Ct Name A B
Segment Size 100 5120

Nu=of
1 2

�� Ul F:O

0:32
OH 1 0.DOOH Addressing

Local Descriptor Table

20,000H Base Address Limit \ Seleca

·-· · \ 1 F

10,000H 1 7

..____ F

20.000H 641<-1

1 0.000H 51 1 9

OH 99

• fl
Segment Reserved Invalid

Pages Pages

Figure 3-12. 16-Bit Address Space Mapped to the Flat Address Space

c
64K

16

1 7:0

20.000H

The addresses with i n the process address space can be referenced by appl ications
or modules usi ng 1 6: 1 6 addressing, in a manner si m i l ar to previous versions of the
operat ing system. However, the same physical memory locations can also be
accessed by 32-bit appl ications and modules usi ng the 0:32 address ing method.
Both the LOT entries used for 1 6: 1 6 memory addressing and the page table entries
used for 0:32 memory addressing can translate to the same memory locations. This
enables 32-bit appl ications to make use of 1 6-bit modules and resou rces, and al lows
32-bit and 1 6-bit appl ications to coexist and communicate with one another.

LOTs are managed in a d ifferent way from previous versions of the operat ing

system . Each LOT is a l located a sparse memory object unti l descri ptors are
i nserted upon load ing an appl ication. Descri ptors for shared memory objects are

i nserted downwards start ing at the top of the LOT, whereas private memory

descriptors are i nserted upwards start ing at the bottom of the LOT. This reflects the

3·1 6 Appl ication Design Guide

management of the l i near address space by the operat ing system . Therefore, the
m in imum LOT size is 8KB, using one page for the shared descri ptors and one page
for the private descri ptors. Note that each code or data selector reserves a fu l l
64KB of l i near address space.

This is equivalent to the i m plementation used in the previous versions of the
operati ng system . It must be noted , however, that a memory object greater than
64KB requ i re special hand l i ng when used.

The fol l owing memory objects use LOT descriptors:

• 1 6-bit .EXE f i les
• 1 6-bit . OLL f i les
• OosAI IocSeg() cal ls
• OosAI IocMem() cal ls with ti l i ng
• 32-bit .EXE f i les with ti l i ng
• 32-bit .OLL f i les with ti l i ng

I m portant notes about t i led memory:

• Only LOT selectors are ti led. This means that only selectors a l located from the
LOT can be converted.

A memory object al located in the com pat ib i l ity region has both a 1 6: 1 6 address and
a 0:32 address, a l lowing access by appl ications usi ng either addressing method. A l l
32-bit executable modules can therefore create 1 6: 1 6 a l iases for memory objects in
the compati b i l i ty region and conversely, 1 6-bit modules can create 0:32 bit al i ases.
The two types of addresses are related by the fol lowi ng API functions:

• OosSeiToFiat
• OosFiatToSel

DosSe/ToFiat: The OosSeiToFiat API function converts a 1 6: 1 6 address to a 0:32
address. This function is described as fol lows:

Figure 3-13. Using DosSe/ToFiat

This function takes a 32-bit selector val ue (u/Se/ector) and returns a poi nter to the
32-bit f lat address.

DosFiatToSe/: The OosFiatToSel API function converts a 0:32 address to a 16 : 16

address. This function is descri bed as fol lows:

Figure 3-14. Using DosFiatToSel

This function takes a pointer to a 32-bit f lat address (pF/atAddress) and returns a
32-bit selector val ue.

Chapter 3. The Appl ication Development Environment 3-1 7

Different Parameter Sizes
The most significant problem with different parameter sizes is the packing of
structures. If there are two different structures for 1 6 and 32 bit with the same name
and it is used in the cal l , then the thunk has to take this i nto account when passing
the i nformation. A l l the problems in this area can be el i minated if any structure that
you define i n 32-bit code is made up of only DWORDS.

64K Segment Boundary Problems
The mixed model programmer m ust be aware of potential problems when
converting addresses between the two addressing models.

Consider the fol lowing scenario:

1 . A 32-bit program passing a pointer to a 1 6-bit routine.

2. The object referenced by this pointer crosses a 64K ti l e boundary.

3. The pointer is converted using DosFiatToSel.

When the 1 6-bit routine tries to reference the data object, i t wi l l be unable to access
the part of the object past the 64K ti l e boundary, as i l l ustrated i n F igure 3-15.

LDT

l axacxml �--� ·�--�- ----�

Ox241 00 ______. r--
+---- 1 7:4100

D � 64K TIIe
A I
T T Boundary -------. A E

Ox1ef00 -------.
M

'---- +---- Of:efOO

I Ox10000 I
�--� ·�---L- ----�

Figure 3-15. Data Item Spans 64K Tile Boundary

1f

17

Of

I n F igure 3-1 5, the data object starts at 32-bit address Ox1 ef00, and ends at Ox241 00.
When the starti ng address is converted, i t produces the 1 6 : 1 6 address Of:efOO.
However, the length of the data item is Ox5200. The 16 : 16 routine wi l l be unable to
address the end of the object, because its offset is greater than 64K, which is larger
than the 1 6-bit segment l im it .

To make this data item addressable, the cal ler w i l l have to copy it to another
location in memory that wi l l not cross a boundary.

3-18 Application Design Guide

Different Call Models
In a 1 6-bit far cal l , CS and IP are pushed when the cal l is made. In a 32-bit segment
cal l , CS and E IP are pushed. To assure that the correct return address is on the
stack, the 32-+1 6 thunk j umps to a 1 6-bit segment before making a 1 6: 1 6 cal l . When
the cal l returns, the thunk makes a far jump to 32-bit code that continues the
processing. If the cal l had been made from the 0:32 segment, the stack would not
have had a val id return address on it , si nce E IP would have been pushed . For
16 : 1 6-+0:32 thunks, in order to get the correct return address, the thunk j umps to
32-bit code to make the cal l .

Another consideration i n the cal l model is the cal l i ng convention. A 1 6-bit
appl i cation m ight very wel l be usi ng the Pascal cal l i ng convention with the 32-bit
code usi ng the C cal l i ng convention. It is obvious that the parameters need to be
pushed on the stack to conform to the convention that is used.

Cal ling 1 6-Bit Code from 32-Bit Code
This section describes some of the conventions used for cal l i ng 1 6-bit code from
32-bit code.

The samples that fol l ow were written using IBM C Set/2 keywords. If you use a
d ifferent compi ler, use the keywords your compi ler employs to ach ieve the same
effect.

IBM C Set/2 provides three l i nkage conventions for cal l i ng 1 6-bit code. These are:

• far1 6 cdecl
• far1 6 fastcal l
• far1 6 pascal

For example, a function Func can be declared as a 1 6-bit function using the far1 6
pascal l i nki ng convention.

Figure 3-16. Using _Far16 _Pascal to Declare a 16-Bit Function

The _Seg1 6 type qual ifier is used to declare 1 6-bit pointers. For example,

Figure 3-1 7. Using _Seg16 to Declare 16-Bit Pointers

declares p1 6 as a segmented pointer that can be used d i rectly by a 1 6-bit
appl ication.

The #pragma seg 1 6 d i rective is used to ensure that shared data i tems do not cross
64K boundaries. The #pragma seg 1 6 di rective can be used d i rectly with the data
item or through a typedef. The fol lowi ng code fragment shows both ways of usi ng
this d i rective:

Chapter 3. The Application Development Environment 3-1 9

Figure 3-18. Using the #pragma seg16 Directive

Using the _Seg1 6 and _Far1 6 _Pascal keywords
The keywords, _Seg1 6 and _Far1 6 _Pascal , are used to cal l 1 6-bit routi nes from
32-bit modules. These keywords are:

• only avai l able in modules compi led as 32-bit
• used to convert pointers i nto thei r selector:offset representation
• used to mod ify function prototypes

Figure 3-19. Using _Seg16

I n F igure 3-1 9, Ptr gets a 16 : 16 address to the stri ng, whi le Ptr32 gets a 32-bit f lat
address to the stri ng . When a 32-bit module dereferences a _Seg1 6 poi nter, an
i n l i ne conversion is generated before the memory is accessed.

When _Far16 _Pascal is used on a function prototype, I B M C Set/2 wi l l produce a
very s imple thunk to get you to the 1 6-bit routi ne.

extern short _Far16 _Pascal m16 () ;

Figure 3-20 on page 3-21 i l l ustrates that _Far1 6 _Pascal is only val id i nside 32-bit
modules.

3-20 Appl ication Design Guide

Figure 3-20. Using _Far16 in a 32-Bit Module

Formal Parameters
When cal l i ng a _Far16 _Pascal function, the IBM C Set/2 compi ler wi l l use WORD
size parameters, i nstead of the default DWORD size (i f the function prototype cal ls
for WORD parameters) .

Figure 3-21 . Passing Different Size Parameters

I n F igure 3-21 a 1 6-bit 400 and a 1 6-bit 50 will be pushed on the stack. I n contrast,
the 32-bit cal l to to DosBeep wi l l push a 32-bit 300 and 1 00.

As mentioned previously there are two major problems to handle when passing data
to a 1 6-bit module: objects crossing 64K segment boundaries and the WORD vs
DWORD al ignment i n structures.

The 64K Segment Boundary Problem Using the IBM C Set/2 compi ler, you can
al leviate the 64K segment boundary problem when the data object is smal ler than
64KB by using the /Gt + switch to control a l ignment.

• No statical ly a l located data wi l l cross a 64K boundary when the /Gt + switch is
specified. This means the compi ler wi l l never declare global or static variables
that cross 64K boundaries.

• Local variables in a function that cal ls a 1 6-bit function wi l l not cross a 64K
boundary. Any memory that you al locate wi l l not cross a boundary when the
/Gt + switch is specified.

Chapter 3. The Application Development Environment 3-21

• No system al located memory wi l l cross a boundary. Every data object that you
a l locate usi ng DosAI IocMem wi l l always start on a 64K boundary. If the item is
smal ler than 64K, then the item wi l l never cross a boundary, but only if the
OBJ_TILE flag is g iven.

However, if you a l locate a very large buffer, and pass a pointer i nto the buffer that is
near a 64K boundary, the 1 6-bit routi ne wi l l be unable to fu l ly address the object.

Function prototypes should be declared as fol lows:

extern short _Far16 _Pascal m16 (short , char *) ;

noti ng the fol l owing:

• Any poi nter parameters do not have to be expl icitly declared as _Far16 _Pascal.
The compi ler wi l l assume that pointers are supposed to be _Far1 6 _Pascal .

• If you pass a _Seg1 6 pointer to a 32-bit routi ne, you should be sure that a
function prototype for the 32-bit routine exists. Also, make sure that the
parameter is declared as a pointer. If there is no prototype, then you should
exp l icitly cast the poi nter to be a normal 32-bit pointer. For example:
pri ntf("%s , " (char *) pFar16Ptr)

Structure Alignment: There are structures in the system, and especial ly in PM, that
have d ifferent packi ng between thei r 1 6- and 32-bit representations.

DWORD al ignment in C language means items that are DWORD in length, such as
poi nters, wi l l always be al igned on 4 byte boundaries. WORD al ignment means that
items that are WORD size or greater wi l l be a l igned on 2 byte boundaries. DWORD
al ignment does not mean that a l l structure members are DWORD al igned. Refer
Figure 3-22 for an example.

Figure 3-22. Structure Alignment

Notice that c and c2 are byte-sized items, and therefore do not qual ify for a l ignment.
Notice that b is a l igned on a WORD boundary for WORD al ignment, and DWORD
boundary for DWORD al ignment. E lements a and d are WORD al igned i n both
al ignment types.

3-22 Appl ication Design Guide

Table 3-3 categorizes a l ignment by data size.

Table 3-3. WORDIDWORD Alignment

Alignment BYTE WORD Data DWORD Data
Size Size

WORD BYTE WOR D WOR D
DWORD BYTE WORD DWOR D

Problems with a l ignment result when data is shared between 32-bit and 1 6-bit
modules, or when cal l i ng 1 6-bit subsystems, such as VIO or KBD. For example,
consider the code in Figure 3-23.

Figure 3-23. Example of a Packing Problem

I n Figure 3-23, the last element of the KBDKEYINFO structure (time) has a d ifferent
offset between the 32-bit p rogram and the 1 6-bit API .

A number of th ings can be done to solve this problem:

• Change the packing of one of the modules using the IBM C Set/2 switch, /Sp.

The compi ler switch /Sp resets the default packi ng for the C compi ler. The
default packing for 1 6-bit programs is WORD a l ignment, and the default packing
for 32-bit programs is DWORD a l ignment. Using this switch may cause problems
if the modu le is going to cal l other systems. For example, usi ng /Sp2 w i l l f ix the
cal l to KBD, but w i l l cause problems with cal ls to true 32-bit subsystems.

• Change the structure definit ion so that a l ignment does not affect the offsets of

any elements. The easiest way to do this is to sort the elements by size so that

DWORDS are f i rst, fol lowed by WORDS and then BYTES.

This is the suggested sol ut ion if you have control over the data structures
definit ion. However, here the structure is defi ned by the system.

• Use a #pragma to change the packing of a particular item, as i n F igure 3-24 on
page 3-24.

I n this situation, using the #pragma is the best choice. It has no i mpact on other

data structures, and can be used to target specif ic structures.

Chapter 3. The Appl ication Development Environment 3-23

Figure 3-24. Another Packing Problem

Other a l ignment problems may develop i n app l ications as wel l . Consider the
fol lowi ng code fragment.

Figure 3-25. Encountering Alignment Problems

Notice that the al ignment of LineBuf is the same between 1 6-bit and 32-bit modu les.
However, the a l ignment is d ifferent when the structure element is in an array, as
i l l ustrated in F igure 3-26.

Offset

r---------------�rn 0
Row

r---------------�� 4
Text

8
Attr

Figure 3-26. An Array Structure Element

For the element Text to always be DWORD al i gned, each i nstance of the structure
must beg in on a DWORD boundary. When you have an array of these structures, the
32-bit compi ler m ust pad out the array so that the a l ignment works out correctly, as
i l l ustrated in Figure 3-27 on page 3-25.

3-24 Application Design Guide

Offset
.,-------..... r-/----r----fi� o r-�e:_:

c

_

o

_

l

_�

� :
Attr Padding W

r---�---�t�i : 1 2

r-
R_ow __

�
c

_
ol __

�:�, 1 6
Text

20
Padding ···'

24
Attr

Row Col
28

Text
32

I Padding
36

Attr

� Padded to make alignment
of DWORDS correct

�

�

Figure 3-27. Aligning an Array of Structures

However, a 1 6-bit compi ler does not do this for DWORD values. Hence the
difference in the arrays. In general , if the structure has DWORD l ength items and
the length of the structure is not a mu lt ip le of 4, then the structure wi l l be padded if
used in an array. The packi ng wi l l need to be changed for addressing to work
correctly. With the IBM C Set/2 compi ler, use the #pragma pack(2) statement.

Examples of using _Far1 6 _Pascal and _Seg1 6
Here are several example programs that make use of the _Far1 6 _Pascal and
_Seg1 6 keywords.

Chapter 3. The Appl ication Development Environment 3-25

Figure 3-28 (Part 2 of 2) . Using the _Far16 _Pascal and _Seg16 Keywords

This example program has several features that should be noted.

• Function prototypes

At the start of the f i le , the standard < OS2.H > f i le is i ncluded. This wi l l give the
function prototypes, typedefs, and structure def initions for the standard 32-bit
APis. You must create you r own 1 6-bit function prototypes for all 1 6-bit functions
you plan to use.

• Names of 1 6-bit routi nes

Note the use of DOS16 as the prefix for the 1 6-bit cal ls. The l i brary f i les for OS/2
2.0 have been expanded to i nclude these new names. They are i ntended to
remove confl icts between names. In the example program above, there are cal ls
to both the 1 6- and 32-bit versions of DosWrite. The only way to differentiate
between the 1 6- and 32-bit vers ions of the API functions is by appending the 16 to
the component name.

3-26 Application Design Guide

The fol lowing example has a s l ightly more compl icated structure.

Figure 3-29. Another Example of Using _Far16 _Pascal and _Seg16

In this example, the packi ng #pragma is used. As previously d iscussed, this wi l l
force the IBM C Set/2 compi ler t o use WORD al ignment for any structures defi ned i n
this range.

Chapter 3. The Application Development Environment 3-27

Figure 3-30. Using the Packing Pragma Convention

In Figure 3-30, note "char * _Seg1 6 ext_data_addr" i n the structure definit ion. This
structure is being passed i nto a 1 6-bit API . Therefore, any pointer that is passed i n
m ust b e declared as _Seg1 6. This wi l l i nsure that the pointer is stored i n a
selector:offset format, and wi l l be usable by the target API .

3-28 Application Design Guide

Function Calls to 1 6-Bit Modules
Thunking considerations affect the way i n which a 1 6-bit function m ust be declared
with in the 32-bit module, and the way in which parameters passed to the 1 6-bit
function are defined. When using IBM C Set/2, such functions and parameters m ust
be declared using the #pragma linkage d i rective and the _Far16 _Pascal keyword ,
as shown i n F igure 3-31 .

Figure 3-31 . Declaring a 16-Bit Function in 32-Bit Code

Note the use of the #pragma stack16 d i rective to set the stack size for a l l 1 6-bit
function cal ls made from the 32-bit module .

Declaring a 1 6-bit function i n th is manner wi l l cause the operating system to
automatical ly perform thunking for al l "value" parameters (that is , those other than
pointers) . Pointers passed as parameters m ust be exp l icit ly defined using the
_Seg16 keyword, as shown in Figure 3-31 .

Using 1 6-Bit Window Procedures
A 32-bit appl ication can access window procedures which reside i n 1 6-bit modules,
either statical ly l i nked or as Dlls. However, the differences between addressing
methods requi res some consideration on the part of the developer, since both the
wi ndow handles and any pointers passed as message parameters wi l l d iffer in thei r
representation.

Creating a Window
When a 32-bit appl ication module creates a wi ndow, and the wi ndow procedure for
that wi ndow resides i n a 1 6-bit module (either statical ly l i nked or in a DLL) , the
cal l i ng routine m ust exp l icitly declare the 1 6-bit nature of the window procedure's
entry poi nt when registering the window class. This can become rather com plex,
since it i nvolves i nvoking a 32-bit entry point from a 32-bit module , but passing a
1 6-bit entry point as a parameter.

A sim pler solution is to bu i ld a registration routine with in the 1 6-bit module , which
registers the window class and creates the window. The 32-bit module then need
only i nvoke this routine, and a l low for the result ing 1 6-bit window handle. This
technique has the added advantage that PM records the fact that the window was
registered from a 1 6-bit module, and wi ll automatical ly perform thunking for
system-defined message classes. The technique is i l l ustrated in F igure 3-32 on
page 3-30.

Since the 1 6-bit module would typical ly be a DLL, the registration routi ne is declared
i n the 1 6-bit module as an exportable entry point usi ng the EXPENTRY keyword.

The 32-bit module declares the registration routi ne MakeMyWindow() as a 1 6-bit

function using the Far16 _Pascal keyword. Si nce the EXPENTRY keyword forces use

of the pascal cal l i ng convention, the d i rective also specifies this cal l i ng convention.

Note that if the registration routi ne and the window procedure were to reside i n a

DLL, this declaration would typical ly take p lace with i n a header fi le provided by the

developer of the DLL.

Chapter 3. The Appl ication Development Environment 3-29

The 32-bit modu le i nvokes the registration routine which registers the wi ndow class
and creates the window. The registration routine then returns the window handle to
the 32-bit module , which stores it in 1 6: 1 6 format. Note that the registration routine
in the 1 6-bit module is not aware that it is bei ng cal l ed from a 32-bit module.

Figure 3-32. Creating a 16-Bit Window From Within a 32-Bit Module

This approach a l lows the same DLL to be accessed by both 1 6-bit and 32-bit
appl ications concurrently. The developer of the DLL s imply provides two separate
header fi l es contain ing declarations of the DLL's entry points, i n the appropriate
format for each programming envi ronment.

Passing Messages to 1 6-Bit Windows
Passi ng data between 1 6-bit and 32-bit window procedures v ia message parameters
also requ i res consideration of the i nternal representations of the data types passed
with i n the parameter. For system-defined message classes, this is handled
automatical ly by OS/2 2.0, but for appl ication-defined message classes the
conversion between addressing methods m ust be handled by the app l ication, si nce
the operating system has no way of determin ing the i ntended contents of each
parameter.

S imple "value" parameters (such as i ntegers or characters) can be passed without
the need for translation. Message parameters should be constructed using the
standard PM macros.

When a pointer or handle is passed in a message parameter to a 1 6-bit window
procedu re, the pointer or handle m ust be translated to the 16 : 16 addressing method
by the appl ication. Since the 1 6-bit modu le is un l i kely to have been written with
code to achieve this conversion, it is the responsib i l i ty of the 32-bit module .

Conversion can be achieved using the _Seg16 keyword to expl icitly define a 1 6: 1 6
pointer or handle, which i s then placed i n a message parameter usi ng the
M PFROMP macro. This is i l l ustrated in F igure 3-33 on page 3-31 . This example

3-30 Application Design Guide

shows the 32-bit code necessary to def ine and in it ial ize a 1 6: 1 6 pointer to be passed
to a 1 6-bit window procedu re.

Figure 3-33. Passing a 16:16 Pointer as a Message Parameter

The resu lti ng message parameter can then be passed to a window in a 1 6-bit
module using the normal WinPostMsg() or WinSendMsg() functions, using a 16 : 16
window handle obtained i n the manner shown i n F igure 3-32. Note that the data
structure referenced by the pointer cannot be greater than 64KB in size, and m ust
not cross a segment boundary. This is ensured i n F igure 3-33 by usi ng the
#pragma seg16 d i rective, since a structure defined usi ng this pragma wi l l
automatical ly b e a l igned o n a segment boundary.

Passing Messages to 32-Bit Windows
The technique described above hand les messages passed to a window i n a 1 6-bit
module. However, messages passed from that window to the 32-bit modu le may
also requ i re thunking. I n order to perform this thunking, the 32-bit appl ication can
define a thunk procedure and register this procedure to PM, which then i nvokes the
thunk procedure whenever a message is passed from with in the window.

This registration is achieved using the WinSetWindowThunkProc() function, which is
i l l ustrated i n F igure 3-34.

Figure 3-34. Mixed Model Programming-WinSetWindowThunkProc() Function

The WinSetWindowThunkProc() function cal l is made from the 32-bit module. Since
the window class for the window has been registered in the 1 6-bit module, PM
recognizes that the thunk procedure is to handle 1 6-bit to 32-bit conversion.

Chapter 3. The Appl ication Development Environment 3-31

A thunk procedure can be deregistered by issuing a WinSetWi ndowThunkProc()
function cal l with the thunk procedure entry point address set to NULL.

Whenever PM i nvokes a thunk procedure for a message, i t passes the normal four
parameters accepted by a wi ndow procedure, along with the entry poi nt address of
the window procedure to which the message was to be passed. This can be the
wi ndow procedure defi ned for the desti nation wi ndow when its class was registered,
or a subclass wi ndow procedure defi ned by the appl ication. Thus, thunking can take
place i rrespective of whether a window has been subclassed.

A sample thunk procedure is shown i n F igure 3-35.

Figure 3-35. Mixed Model Programming-Thunk Procedure

The thunk procedure is i nvoked whenever a message is passed by the window i n
the 1 6-bit module to a wi ndow i n the 32-bit module. The thunk procedure is si m i lar �.

in structure to a normal wi ndow procedure, but contai ns cases only for
appl ication-defi ned message classes, si nce thunki ng for system-defi ned message
classes is performed by PM.

I n F igure 3-35, the 1 6-bit wi ndow contains two appl ication-defi ned message classes,
WMP _MSG1 and WMP _MSG2 . The fi rst of these contai ns pointers in both
parameters, and thus both parameters are thunked by the thunk procedure. The
second message class contai ns a pointer in the f i rst message parameter only; the
second may conta in an i nteger or some s imple value parameter which does not
requ i re expl icit thunki ng.

After perform i ng the necessary thunking, the thunk procedure di rectly cal ls the
wi ndow procedure entry poi nt suppl ied by PM when the thunk procedure is i nvoked.
Note that this is one of the few i nstances where d i rect i nvocation of a wi ndow
procedure should be used; the correct sequence of message processing is
preserved in this case because the thunk procedure itself is i nvoked either
synchronously or asynchronously by PM, dependi ng upon whether the message was
sent or posted by the 1 6-bit wi ndow.

3-32 Appl ication Design Guide

Calling 32-Bit Code from 1 6-Bit Code
There is no mixed model support in the 1 6-bit tools. Hence, the 1 6-bit tools provide
no support for f lat code. This leaves the 32-bit module with al l responsib i l i t ies for
making the mixed model executable work correctly.

To cal l 32-bit routi nes from a 1 6-bit rout ine, it is necessary to declare the 32-bit
routine with a 1 6-bit cal l i ng convention. It is also necessary for the 1 6-bit routi ne to
get the address of the 32-bit routi ne in a 1 6 : 1 6 form. This is done by passing the
address of the 32-bit routi ne to the 1 6-bit routine, and having the 1 6-bit rout ine cal l
the 32-bit routi ne through a function poi nter. The fol lowi ng code fragment i l l ustrates
this poi nt:

Figure 3-36. Calling 32-Bit Code from 16-Bit Code

This example cal ls the fn 1 6 routi ne, passing to it the address of the 32-bit routi ne
fn32, plus a stri ng to be pri nted. Fn1 6 cal ls fn32 through the function poi nter fnptr,
and fn32 converts its parameter to a f lat poi nter upon entry, switches i nto 32-bit
mode, runs, and then switches back to 1 6-bit mode for the return to fn16 .

Th is sample was written us ing IBM C Set/2 keywords. If you use a different
com pi ler, use the keywords your compi ler employs to achieve the same effect.

M igrating to OS/2 2.0

If you have al ready made significant progress on a 1 6-bit OS/2 appl ication, you can
com plete the app l ication for that envi ronment. Although your appl ication w i l l not
take advantage of the features of 32-bit OS/2, it w i l l run in that envi ronment,
a l lowing users to make use of the appl ication unti l you complete your 32-bit
revision.

Chapter 3. The Appl ication Development Environment 3-33

If you are j ust beg inn ing development of you r appl ication, you should consider
developing both a 1 6-bit and 32-bit version of your appl ication by using one of the
fol lowing strateg ies:

1 . Write a 1 6-blt application but Include 80386 code.

Gear the application for 1 6-bit OS/2, but i ncl ude conditional 80386 code that can
be used at run time if the software is run on a 80386 machi ne. (This can be
useful for spreadsheet recalculations, for example, where the avai labi l i ty of the
80386 i nstruction set adds signif icantly to the appl ication's performance.)

Advantages: The appl ication wi ll be able to run under both 1 6- and 32-bit
versions. In addit ion, it wi l l offer improved performance transparently when run
on a 80386 machi ne.

Disadvantages: No l i near memory management wi l l be avai lable. The
appl ication wi l l be more difficult to port to other 32-bit f lat model platforms. You
wi l l need to develop and support both 80386 and 80286 code in the appl ication.

2. Create conditional source code for 1 6- and 32-bit versions.

A single program source can be used with conditional compi lation to produce
executables for either a 1 6- or 32-bit format.

Advantages: Provides maximum market coverage. The 80386 version can take
advantage of the i m proved i nstruction set, l i near memory, and so on.

Disadvantages: Requi res two sets of development f i les (i nclude f i les and
l i b raries) and both versions of a compi ler and an assembler. Source code is
larger and more difficult to maintain . Functions that take advantage of l i near
memory or other OS/2 2.0-specific functions m ust be written twice and
conditional ly compi led to create the appropriate version.

3. Support 1 6· and 32-bit sources.

Develop and mainta in both a 1 6-bit and a 32-bit version of the appl ication.

Advantages: Provides maximum market coverage. The 2.0 version has al l the
benefits of a 32-bit appl ication.

Disadvantages: Separate source code may make future changes easier, since a
straightforward 80386 version al ready exists.

To guarantee unique names in the l i braries, all 32-bit functions i nclude the number
"32" i n the function name (for example, Dos320pen) . I n the header fi l es, the 32-bit
functions names are a l iased so that you use only the standard name (for example,
DosOpen) in your source fi l e and let the compi ler automatical ly replace it with the
actual name. The com pi ler chooses the correct a l ias based on the development
model selected.

3-34 Application Design Guide

Summary

OS/2 2.0 supports fou r types of appl ications: fu l l -screen , windowable , PM, and
DOS/Windows. A fu l l -screen appl ication is any OS/2 appl ication that does not
create a PM message queue, and does not rely on the PM mouse and keyboard
process ing for i nput. A windowable appl ication is a fu l l -screen app l ication that also
can run in a wi ndow, or PM session. A PM appl ication is any OS/2 appl ication that
creates a message queue. General ly, PM appl ications create one or more windows
to i nteract with the user. A DOS/Windows appl ication runs in an OS/2 DOS session
in the protected , vi rtual 8086 mode of the 80386 microprocessor. A DOS/Wi ndows
app l ication can be fu l l -screen or windowed, and it can be run concurrently with
other appl ications.

OS/2 appl ications can be further c lassified as pure 1 6-bit, m ixed 1 6-bit, pure 32-bit,
and mixed 32-bit appl ications. Pure 1 6-bit appl ications can be run under the 1 6-bit
and 32-bit versions of the operating system , but cannot take advantage of the
features of the 32-bit programm i ng envi ronment. Mixed 32-bit appl ications can only
be run under the 32-bit version of the operating system . L ike pure 1 6-bit OS/2
app l ications, they do not have access to the 32-bit v i rtual address space; however,
because they have a 32-bit EXE format, they can take advantage of demand paging.
Pure 32-bit app l ications i ncorporate the f lat memory model and protection
mechanisms which are com mon on a wide range of com puter i ndustry hardware
p latforms. They can only run under the 32-bit version of the operat ing system .
Mixed 32-bit app l ications can run only under the 32-bit version of the operating
system, although they can use 1 6-bit APis. These appl ications can access the enti re
32-bit vi rtual address space.

OS/2 2.0 provides different entry points for 1 6-bit and 32-bit APis, making it possible
to m ix 1 6- and 32-bit code with in a s ingle EXE modu le. It is also possib le to cal l
32-bit APis from a 1 6-bit C program, and to cal l 1 6-bit APis from a 32-bit C program.
To support this, two d ifferent l i braries-OS2286.L IB and OS2386.L IB- are supported
and changes have been m ade to the i nclude fi le archi tecture and to the compi ler
(such addi ng new keywords to support cal l i ng 1 6-bit functions) .

I n OS/2 2.0, the system suppl ies an i nterface between 1 6-bit and 32-bit code, cal led

a thunking layer. The thunking layer translates cal ls to 1 6-bit functions i nto cal ls to

32-bit functions and cal ls to 32-bit functions i nto cal ls to 1 6-bit functions. I n
performi ng these translations, the thunk m ust take i nto account:

• The different memory models between the 1 6-bit version and 32-bit version of the

operating system . The 1 6-bit segmented memory model needs to be mapped

onto the 32-bit f lat memory model in such a way that addresses can be qu ickly

converted. This mapp ing is accompl ished through a technique cal l ed tiling. The

API functions, DosFiatToSel and DosSeiToFiat, are used to convert 32-bit flat

addresses to 1 6-bit segmented addresses and 1 6-bit segmented addresses to

32-bit f lat addresses.

• Different parameter sizes

• 64K segment boundary problems

• Different cal l models

Chapter 3. The Application Development Environment 3-35

3-36 Application Design Guide

Chapter 4. Comparison of 1 6-Bit and 32-Bit OS/2 Functions

This chapter describes the d ifferences between 1 6-bit and 32-bit OS/2 functions for:

• Control P rogram
• P resentation M anager

Note: Specific uses of the OS/2 API functions are demonstrated in the Toolkit
sample programs. For a complete l isting of the API functions used by each sample
program , see Appendix A , "Sample frograms C ross I ndex" on page A-1 .

Changes to the Control Program

Changes to Control Program function� are of two types: name changes and
replacements or enhancements.

Many of the 1 6-bit function names were changed to be more consistent in the 32-bit
release. The guidel i nes used to nam� functions are:

• Compl iance with Get, Set, and Query semantics used in PM-8AA conventions
• Use of action verbs before nouns
• Use of consistent semantics for s im i lar actions

Fi le-system functions are significant!)* affected by name changes.

Some 1 6-bit functions have been com pletely redesigned for the 32-bit version of the
operating system . This is particularly true in memory-m anagement, semaphore,
and s ignal functions.

Functions for the 32-bit operating system are described in the OS/2 Version 2.0
Programming Tools and Information. Some 1 6-bit functions are not supported by
32-bit code. These functions, though �ti l l supported by OS/2 2.0, are described i n
the OS/2 2.0 Control Program Programming Reference.

Memory Management

© Copyright IBM Corp. 1992

The 1 6-bit version of the operating sy�tem uses a segmented-memory model .
Appl ications can request segments a� large as 64KB. They access data i n those
segments through pointers consisting of 1 6-bit selectors and offsets.

f
I n the 32-bit OS/2 version of the oper�ting system :

• Memory is requested b y object, nrt b y segment. Functions that a l locate memory
return 32-bit pointers to memory qbjects ranging i n size from 1 page (page = 4K)
to any size supported by avai lable swap space, to a maximum of 448MB. Swap I
space refers to external storage devices used to store code and data which is not
requ i red for i mmed iate processo� execution.

• All pointer references are 32-bit �ear pointers. No segment register loads are
i nvolved; thus al l of the segment registers are equal : OS = SS = ES.

• Virtual memory works by demand pag ing, rather than by compaction and

segment swapping. This has i m portant i mpl ications for sizing memory objects

for optimum system performance.

Al l memory al locat ions in the 32-bit version of the operating system , whether private
or shared, i n it ial i ze com mitted pages to al l zeros. P rograms can rely on this when
determin ing the i n itial contents of memory.

4-1

Table 4-1 on page 4-2 summarizes the 1 6-bit and correspondi ng 32-bit
memory-management functions.

Table 4-1 . 16-Bit to 32-Bit Memory-Management Functions

1 6-Bit Name 32-Bit Name

DosAI IocSeg

DosAI IocShrSeg

DosGetShrSeg

DosGetSeg

DosGiveSeg

DosReal locSeg

DosFreeSeg

DosAI IocHuge

DosGetHugeShift

DosRea l l ocHuge

DosCreateCSAi i as

DoslockSeg

DosUnlockSeg

DosMemAvai l

DosSizeSeg

DosSubAI IocMem

DosSubFreeMem

DosSu bSetMem

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Allocating Memory
Version Functions

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

DosSubAI IocMem

DosSubFreeMem

DosSubSetMem

DosSubUnsetMem

DosAI I ocMem

DosAI IocSharedMem

DosGetNamedSharedMem

DosGetSharedMem

DosGiveSharedMem

DosFreeMem

DosSetMem

DosQueryMem

1 6-blt

32-bit

DosAI IocSeg, DosAI IocHuge

DosAI IocMem

The 32-bit function replaces both 1 6-bit functions. The new al location scheme has
several concepts specific to the paged envi ronment. Among them is the abi l ity to
control access to the memory object and to control when to commit the pages.

4-2 Appl ication Design Guide

The example shown i n Figure 4-1 i l l ustrates a typical request for 68KB of memory
under both the 1 6-bit and 32-bit versions of the operat ing system .

Figure 4-1 . Allocating Memory

Both the 1 6-bit and 32-bit code shown a l locate 69 632 bytes, returning a pointer to
the fi rst byte i n pabObject (or pab0bject1) . The memory has both read and write
access, the typical permission for dynamical ly al located memory objects. I n
addit ion, the pages are com m itted when the cal l returns, and storage space for the
objects is reserved; the program can now make memory references for read ing or
writi ng to the range, pabObject through pabOjbect plus 69 631 . Under the
segmented architecture, programs cannot read past the fi rst 64KB without changi ng
the selector. I n the 32-bit version, the enti re range of addresses corresponding to
the object is d i rectly accessi ble.

I n the precedi ng example, note that the paged memory requested has a granularity
of 4KB; exactly 68KB has been requested. G ranularity is the un it of memory
a l location specific to an operating system and hardware p latform. The granularity is
4KB for OS/2 2.0 and 16 bytes to 64 000 bytes for 1 6-bit versions of the operating
system . Had 68KB plus 1 byte been requested, the system would have to commit
72KB of memory; the extra s ingle byte wou ld use up 4KB of the l i near address
space. Although pages of memory wi l l be swapped out as needed, d i rectly
a l locating many small objects with the DosAI IocMem function is i nefficient. I nstead,

Chapter 4. Comparison of 16-Bit and 32-Bit OS/2 Functions 4-3

use the DosSubAi locMem function or the C l i brary mal loc routi nes. (Mal loc is a
standard C generic method which translates a programmer's request for memory
al location to the specif ic operat ing system i m plementation of memory al location.
This technique removes some operati ng system dependent code from the C
programmer.) You also can i mplement your own heap by requesti ng a large,
page-al igned block and subdivid ing it as needed by your code. A heap is a large,
a l located memory region that is subdivided for private use. When writi ng
appl ications expected to run under the 32-bit and earl ier versions, remember that
the DosAi locSeg function wi l l not pack segments i nto the same page. Segment
sizes of 1 6KB to 32KB are a reasonable compromise for code that m ust run under
either system. (Larger segments become more efficient under pag ing , but less
efficient under segmentation.)

Freeing Memory
Version Functions

1 6-blt

32-bit

DosFreeSeg

DosFreeMem

These functions release previously a l located, private or shared, memory objects.
For DosFreeMem, the address should always be the base address returned by a cal l
to the DosAI IocMem function. With shared memory, the associated reference count
is decremented by one; when al l holders have released the shared memory, the
system wi l l reclai m the space. The DosFreeSeg function also is used to release
selectors granted for huge memory and code al i as ing (a feature of 286 architecture
and OS/2 Version 1 .X i m plementation which al lows mu lt ip le selectors to reference
the same code segment), which are not needed under under the 32-bit version. �

The example i n F igure 4-2 shows how to release memory under both 1 6-bit and
32-bit versions.

Figure 4-2. Freeing Memory

Suballocating Memory
Version Functions

1 6-blt

32-bit

DosSubSet, DosSubAi loc, DosSubFree

DosSubSetMem, DosSubAi locMem, DosSubFreeMem,
DosSubUnsetMem

Subal location enables large memory object to be subdivided. DosSubAi locMem
and DosSubFreeMem al low a simple heap arrangement, with low performance
requ i rements (few i nstructions requ i red to perform repetitive al locat ing and freeing

4-4 Appl ication Design Guide

of smal l memory blocks) , that is suff icient for many memory operations. This
al location package normal ly wi l l seria l ize requests made by different threads with in
a process (when using Wi nAI IocMem, the appl ication m ust provide for
synchronization) . Table 4-2 shows the d ifferences for the DosSubSetMem function.

Table 4-2. 16-Bit and 32-Bit DosSubSetMem

Feature 16-Bit 32-Bit
G ranularity of size for 4 bytes 8 bytes
DosSubSetMem and
DosSubAI IocMem

M i n i m u m s ize for 12 bytes: 8-byte header 40 bytes: 32-byte header
DosSubSetMem p l us 4-byte a l l ocation p lus 8-byte a l l ocation

reg ion. reg ion .

When DosSu bSetMem = A request of 64KB. A requ est of 4GB (GB
0 equals 1 073 7 41 824

bytes) . (**th is cal l w i l l fai l
due to not enough
memory **)

Max i m u m size of request Segment s ize: 1 2 bytes Object size: 32 bytes
for DosSubAI I ocMem (reserved for header) . (reserved for header) .

Serial ization of requests Always. Selectable.

Additional f lags None. The requestor wants a
subal l ocating function to
manage the commitment
of the pages spanned by
the memory poo l ; the
requestor requ i res access
to the memory pool to be
serial ized.

I n both 1 6-bit and 32-bit versions, the maxi mum size for DosSubSetMem is the size

of the memory object bei ng used for the heap. Because memory requests may be

larger than 64KB in the 32-bit version, the new version of DosSubSetMem provides

more f lexi b i l i ty i n choosing the size of the heap, and removes any external barriers

to size l i m its for data objects with in the heap. Also, both versions i nitia l ly a l low the

size requested in DosSubSetMem to be l ess than the size of the segment (1 6-bit

version) or object (32-bit version). The subal locator then uses the low area of the

segment (object) for its al location region. If DosSubSetMem later is used to make

the al location region larger, the memory currently i n use (inc lud ing the organization

i nformation in the header) is guaranteed to remain val id . For a l l versions,

DosSubFreeMem must i ncl ude the size of the object bei ng freed; the subal locator

does not maintai n the size of each object, and space that is not freed remains

locked.

Chapter 4. Comparison of 1 6-Bit and 32-Bit OS/2 Functions 4-5

The example i n F igure 4-3 demonstrates the subal location and freeing of 1 6 bytes
from a 4KB memory object. �

Figure 4-3. Suballocating Memory

Using Named Shared Memory
Version Functions

1 6-bit

32-bit

DosAI IocSh rSeg, DosGetSh rSeg

DosAI IocSharedMem, DosGetNamedSharedMem

Named shared memory enables any process that specifies the correct name to gain
access to the shared segment. One process m ust a l locate the shared segment
i nit ial ly; others then can gain access by usi ng the DosGetSh rSeg function. Named
shared m emory uses the f i le-system name space; al l names m ust be of the form ,
\sharemem\name, where name represents a val id fi le name. The system wi l l not a l low
subsequent cal ls that attempt to a l locate named memory to a name al ready i n use.

4-6 Application Design Guide

The example i n F igure 4-4 demonstrates the al location and subsequent sharing of a
named segment.

Figure 4-4. Using Named Shared Memory

Both processes can read from and write to the shared segment. The selectors
returned to the cooperati ng processes i n the 1 6-bit version wi l l refer to the same
vi rtual-memory segment. The poi nters returned in the 32-bit version are guaranteed
to be identical for identical names; that is, the shared memory l ies at the same
vi rtual address in each process.

Chapter 4. Comparison of 1 6-Bit and 32-Bit OS/2 Functions 4-7

Using Unnamed Shared Memory
Version Functions

1 6-blt

32-blt

DosGiveSeg, DosGetSeg
DosGiveSharedMem, DosGetSharedMem

Unnamed shared memory requ ires that the process al l ocating the memory object
transfer a handl e to it to another process. (The i n it ial process must know the
process identifier of the recipient.) U nnamed shared memory does not
communicate through the fi le-system name space.

The example i n Figure 4-5 demonstrates how a memory segment is al located.

Figure 4-5. Giving Unnamed Shared Memory

4-8 Application Design Guide

The example i n F igure 4-6 demonstrates how a segment is obtai ned.

Figure 4-6. Getting Unnamed Shared Memory

Generating Dynamic Code
Version Functions

1 6-bit

32-bit

DosCreateCSAi ias

DosAI IocMem

Before the 32-bit version of the operat ing system, programs requ i ri ng that code be
generated dur ing execution used the DosCreateCSAi ias function. A data segment
would be used to write the operation codes (opcodes) , then DosCreateCSAi i as
would return a new code segment, which could be used to make a cal l to the
dynamical ly comp i led code. With the 32-bit version of the operating system , the
DosAI IocMem function, specify ing PAG_WRITE I PAG_EXECUTE access, is used for
writ i ng in the memory object and for making it executable.

Chapter 4. Comparison of 1 6-Bit and 32-Bit OS/2 Functions 4-9

The example i n F igure 4-7 demonstrates the generation and execution of
program-compi led code.

Figure 4-7. Generating Dynamic Code

4·1 0 Appl ication Design Gu ide

� ..

Determining Available Memory
Version Functions
18-bH

32-bH

DosMemAvai l
No equivalent

The DosMemAvai l function was used i n earl ier versions of the operating system to
return the largest consecutive block of free memory avai l able without resorting to
the swapping, moving, or discard ing of segments. Because this function Is not
seria l ized with system functions, the value returned wi l l only be accurate when i t i s
determined by the function, and not necessarily after the system returns to the
issuing code. Therefore, the only practical use for the function is to measure
system-memory load. No corresponding function exists i n the current 32-bit version.

Discardinsr Memory Objects
Version Functions

1 6-blt'

32-blt

DoslockSeg, DosUnJockSeg
No equivalent

Earl ier segmented versions of the operating system al lowed the discard ing of
segments as one means of managing virtual memory. I nformation that a program
could easily regenerate could be stored in a discardable segment, rather than being
swapped to disk. The 32-bit version of the operating system uses
least-recently-used swapping for its memory-overcommltment feature and does not
support the discard ing of pages. Memory overcommitment is the ratio between the
amount of code and data which the operating system is capable of executing or
referencing and the avai lable physical storage. If the avai lable physical storage is
less than the amount of code and data, the difference is kept on the swap space.
This may lead to larger swap-space requi rements for programs that make extensive .
use of discardable objects. The DoslockSeg and DosUnlockSeg functions have no
counterparts in the 32-bit system, and the allocation flag, SEG_DISCARDABLE, is not
used.

SeHing Memory Commitment and Access
Version Functions

1 6-blt

32-bH

No equivalent
DosSetMem

Pages that are not committed at al location t ime can be selectively committed with
the DosSetMem function. This function also can be used to change the access type
of committed pages of memory. These functions have no counterparts in earl ier
versions of the operating system .

Checking a Process's Virtual-Memory Map
Version Functions

1 6-blt

32-bH

No equivalent
DosQueryMem

Any thread can identity the current status of the memory map for the corresponding
process. The DosQueryMem function can be cal l ed to determ ine the access,
commitment, and private or shared status of b locks of memory. It is the only
function that al lows memory addresses outside the range currently al located to the

Chapter 4. Comparison of 16-Bit and 32-Bit OS/2 Functions 4-11

process. There is no corresponding function i n earl ier versions of the operat ing
system . �

Threads and Processes
OS/2 2.0 supports m ulti p le processes, as wel l as m ulti p le threads with i n each
process. The functions support ing process and thread control are very s im i lar i n
both the 1 6-bit and 32-bit versions; however, smal l d ifferences d o exist for some
functions. Table 4-3 shows the 1 6-bit and correspond ing 32-bit functions that
support process and thread contro l .

Table 4-3. 16-Bit to 32-Bit Tasking Functions

16-Bit Name

DosCreateThread

DosCWait

N/A

DosEnterCritSec

DosExecPgm

DosExit

DosExitCritSec

DosExitlist

DosGetlnfoSeg

DosGetEnv

DosGetPrty - .. ,�_

DosKi l l Process

DosSetPrty

DosGetPI D

DosGetPPID

DosR2StackReal l oc

DosCai i Back

DosRetForward

N/A

DosPTrace

DosResumeThread

DosSuspendThread

DosQSysl nfo

Creating Threads
Version Functions

1 6-blt

32-blt

DosCreateThread

DosCreateThread

�

32-Bit Name

DosCreateThread

DosWaitChi ld

DosWaitThread

DosEnterCrltSec

DosExecPgm

DosExit

DosExitCritSec

DosExitlist

N/A

DosGetlnfoBiocks

N/A

DosKi i iProcess

DosSetPrlority

N/A

N/A

N/A

N/A

N/A

DosDebug

N/A

DosResumeThread

DosSuspendThread

DosQuerySysl nfo

The 32-bit version of the DosCreateThread funct ion has several new features:

• The function poi nter is now a near poi nter. Data declared with a near pointer
resides i n the default data segment and is referenced with 32-bit addresses.

4-1 2 Appl ication Design Guide

• Clearing the ES register is no longer requ i red upon entry to the new thread.
Because a l l threads i n a process have ES = DS = SS, memory violations from
accessing a segment cleared by another thread do not occur.

• A single doubleword argument can be passed to the newly created thread
through the creation function. This often w i l l be the address of the i nformation
requ i red by the new thread.

• The thread can be started i n either the active or the suspended state. If it is
started i n the suspended state, another thread should eventual ly cal l the
DosResumeThread function to activate it. 1

• Stack memory is now al located by the system . The system wi l l fi rst round this
size up to the nearest page-size boundary (4KB in 32-bit version) and then use
that number to a l locate the enti re range of stack memory. Memory wi l l be
committed dynamical ly for the thread's stack, usi ng the guard-page feature of
the 80386 m icroprocessor.

In normal operation, memory requests w i l l g radual ly fi l l up the current page unti l
a new request raises a guard-page-entered exception. The system wi l l then
commit the old guard page and move it down. Because only one guard page is
used, a l locations from the stack greater than 4KB for any thread (even the i n it ial
one) should be hand led by a compi ler-generated stack probe.

Control l ing Threads
Version Functions

1 6-blt

32-blt

DosSuspendThread, DosResumeThread

DosSuspendThread, DosResumeThread

These functions perform the same actions. DosResumeThread also can be used to
start execution i n threads that were i n it ia l ly created i n the suspended state with
DosCreate Thread.

Exiting from Threads and Processes
Version Functions

1 6-blt

32-bit

DosExit

DosExit

DosExit can be used to end the enti re process, or a single thread with i n the process.
There are several i mportant poi nts to remember regard ing its use:

• The system can create threads for the process, i ndependent of the threads
created by the appl i cation. Therefore, to exit from the process, always use
EXIT _PROCESS, rather than tryi ng to exit from or to end each thread.

• In the 32-bit version of the operat ing system, end ing thread 1 (the i n it ial thread
for the process) ends the enti re process. It is equivalent to cal l i ng DosExit with
EXIT_PROCESS as the fi rst parameter.

• When a process is end i ng , one thread wi l l be kept active and used to execute the
exit l ist for the process. When the execution of the l i st is completed, the system
wi l l free all resources held by the process, and the process wi l l end. The result
code (exit code) wi l l be returned to the parent process.

Chapter 4. Comparison of 16-Bit and 32-Bit OS/2 Functions 4-1 3

Ending Other Processes
Version Functions

16-bit

32-blt

DosKi i iProcess

DosKi i iProcess

In both the 1 6-bit and 32-bit versions of the operating system, a process can specify
tree termi nation (end ing another process and a l l i ts descendants) only if the target
is the process itself, or a process begun by it with the DosExecPgm function and an
AsyncTraceFiags of 2 (EXEC _ASYNCRESUL T) . If the target process has fi n ished, its
chi l d processes wi l l still be ended.

In all versions, the system erases the contents of system buffers; if i nternal buffers
exist (such as C fi l e buffers) , the process m ust use an exception handler to t rap the
termi nation signal , end its functions in an orderly manner, and then exit.

Handling Critical Sections
Version Functions

16-bit

32-blt

DosEnterCritSec, DosExitCritSec

DosEnterCritSec, DosExitCritSec

These functions operate the same i n both the 1 6-bit and 32-bit versions of the
operat ing system . The DosEnterCritSec function can generate an overflow error if
the count should exceed 65535; DosExitCritSec can generate an underflow error if
the count becomes less than 0. I n e ither case, the function wi l l not have taken
effect. In a l l versions of the operating system, the thread-handl i ng signals can sti l l
b e activated i n a critical section and should b e written i n such a way that i t wi l l not
i nterfere with critical resources.

Waiting lor Threads
Version Functions

16-bit

32-blt

DosCWait

DosWaitChi ld , DosWaitThread

DosCWait and DosWaitCh i ld operate the same i n both the 1 6-bit and 32-bit versions .�

of the operating system . DosWaitThread is new for the 32-bit version of the
operating system . It enables a thread to wait for another thread with in the process
to end. A thread can wait for any thread, or for a specific thread, to termi nate.

Getting Thread and Process Information
Version Functions

16-blt

32-blt

DosGetEnv, DosGetlnfoSeg, DosGetPrty, DosGetPID, DosGetPPID

DosGetlnfoBiocks, DosQuerySyslnfo

Information services have changed s l ightly i n the 32-bit version of the operating
system . Values that are constants are a l l accessib le with DosQuerySyslnfo. Other
i nformation functions (such as DosGetDateTime) m ust be used to retrieve dynamic,
system-wide i nformation.

Per-thread and per-process i nformation is now retrieved through DosGetlnfoBiocks,
which returns the address of the Thread I nformation B lock (TIB) of the current
thread and the address of the Process I nformation B lock (PI B) of the current
process.

4-14 Application Design Guide

Several items of the TIB are kept i n a read/write area of the process address space.
Each data item is a doubleword f ield that descri bes the current thread as fol lows:

The system-specif ic TIB contains the fol lowing doubleword f ields:

Several items of the PIB are kept in a read/write area of the process address space.
Each data item is a doubleword f ield that descri bes the current process as fol lows:

I nformation that is specified for the "current thread" refers to the thread cal l i ng
DosGetlnfoBiocks. Process i nformation is shared by a l l threads i n a process.

This i nformation replaces the function of DosGetPrty, DosGetPID, and DosGetPPID,
and part of DosGetlnfoSeg.

The example in F igure 4-8 on page 4-1 6 determ i nes the process identifier,
parent-process identifi er, thread priority, and current hour.

Chapter 4. Comparison of 1 6-Bit and 32-Bit OS/2 Functions 4-1 5

Figure 4-8. Getting Thread and Process Information

Starting Programs
Version Functions

1 6-bit

32-blt

DosExecPgm

DosExecPgm

These functions perform the same action.

Debugging Programs
Version Functions

1 6-blt

32-bit

DosPtrace

DosDebug

The DosDebug function is new for the 32-bit version of the operati ng system . It

provides 32-bit debugger support for 1 6-bit and 32-bit app l ications. The DosPtrace

function is retai ned to provide debuggi ng support for 1 6-bit debuggers. Due to the

equ ivalencies between DosPtrace and DosDebug, DosPtrace can be i m plemented

4-1 6 Appl ication Design Guide

on top of DosDebug through a thunk l ayer. This thunk l ayer i s needed to convert
between DosPtrace 1 6: 1 6 addresses and DosDebug 0:32 addresses, between
DosPtrace word f ields and DosDebug doubleword f ields, and so on.

1 6-Bit Functions with No 32-Bit Counterparts

Semaphores

The DosR2StackReal loc and DosCai i Back functions exist in previous versions of
OS/2 2.0 because of the three-ri ng nature of the 80286 privi lege l evels. The l i near
addressing method used in OS/2 2.0 supports a two-level (supervisor/user) privi l ege
mechanism, which makes these functions unnecessary.

The 1 6-bit semaphore funct ions have the fol lowing shortcomi ngs:

• There is a possib i l i ty of m issing "clear" events.

• The i ndividual semaphore state is not adequately cleared by the system at
process or thread termi nation.

• The system l im i t on the total number of semaphores is too restrictive.

• Thread termi nation cannot be detected in a critical section, i ncreasing the
possibi l i ty that resources can be left in an unresolved state.

• There is a poss ib i l i ty of a spurious wake-up. A spurious wake-up results when
code that has suspended execution (due to a semaphore) resumes execution
before the semaphore is freed by another thread or process.

• Semaphore usage is overloaded, because the same semaphore mechanism is
used for both s ignal ing and m utual exclusion.

• The abi l i ty of any thread to determi ne the state of a semaphore, other than the
thread that owns the semaphore, is lim ited.

The 32-bit versions of the semaphore functions address these problems, and also
attempt to provide the speed of the former "fast-safe RAM " semaphores. (Recal l
that for fast-safe RAM , seria l ization is contro l led by the system and contai ned i n
appl i cation memory) . None of the 32-bit semaphore functions are compati ble with
the 1 6-bit versions.

There are two classes of 32-bit semaphores: private and shared. A process can

have up to 64K of private semaphores, ava i lab le only to threads with i n that process,

and can also access up to 64K of shared semaphores, avai lable to al l processes i n

the system . I n addit ion, there are three types of 32-bit semaphores: m utex, event,

and m uxwait.

Type

Mutex

Event

Description

(Mutual Exclusion): Used by several threads with in a process, or

by several processes, to protect access to a critical region. A

typical use would be to prevent more than one thread at a ti me

from updating a fi le on disk.

Provide a signal i ng mechanism among threads or among several
p rocesses. A typical use would be to manage shared memory:
Process 1 writes to the shared region then uses an event
semaphore to signal processes 2 and 3 that they can access the
shared data.

Chapter 4. Comparison of 16-Bit and 32-Bit OS/2 Functions 4-1 7

Muxwalt (Multiple Walt) : Enable a thread to wait on several event or mutex
semaphores s imultaneously. It is a com pound semaphore that
consists of up to 64 event semaphores or m utex semaphores (the
two types cannot be mixed) . A typical use would be when a thread
requ i res access to several shared regions of memory at once. The
system blocks the thread unti l the thread acqu i res ownershi p of a l l
m utex semaphores protect ing the shared regions. The thread can
then access the regions. Meanwhi le, the system prevents access
by other th reads that are usi ng the muxwait semaphore.

Using Semaphores
Several general ru les apply when usi ng the new 32-bit semaphore functions.

Semaphores can be created as either named or unnamed entiti es. If the name
parameter is other than NULL, it m ust be a name of the form \sem32\name, where
name adheres to the f i le-system naming conventions. No record of the semaphore
is actual ly kept on the d isk; when the last process closes a named shared
semaphore, the semaphore is removed from the system . A named semaphore is
always shared (avai lable to other processes that know the name) . If the name f ield
is NULL, an unnamed semaphore is created. Unnamed semaphores can be either
private to a process or shared among processes, dependi ng on whether the
DC_SEM_SHARED flag is set when the semaphore is created. Semaphores
i ntended for use solely among threads of the same process should be made private.

The sequence for usi ng shared semaphores among processes is as fol lows:

1 . Process 1 cal ls the appropriate function to create the semaphore, i n itia l iz ing it
through the creation parameters. �

2. Processes 2 through n use the same name (named semaphores) or receive the
same semaphore handle (shared unnamed semaphores) , and each cal ls the
appropriate function to obtai n access to the semaphore.

3. The processes use the semaphore.

4. Each process cal ls the appropriate closi ng function (DosCioseMutexSem,
DosCioseEventSem , DosCioseM utexWaitSem) when f in ished with the
semaphore. The system al lows nested Open and Close functions for
semaphores, up to 64KB deep (65 536 si mu ltaneous open functions); however, to
release a semaphore from a process, the Close function must be executed as
many ti mes as the Open function was executed. When a l l processes have closed
the semaphore, the system frees the associated name (named semaphores) or
handle (unnamed semaphores) .

If a th read ends whi le owning a mutex semaphore, future request or query function
cal ls wi l l return the error val ue, ERROR_SEM_OWNER_DIED. The m utex
semaphore then must be closed, because its use is no longer val id . If
ERROR_SEM_OWNER_DIED was returned from a muxwait semaphore, a l l
semaphores i n the group shou ld be queried and those whose owners have ended
must be closed. They also should be removed from the muxwait g roup. Event
semaphores (and m uxwait semaphores i nvolv ing event semaphores) wi l l not
receive this error if the process that expected to cal l DosPostEventSem ends.
Processes waiti ng for untrustworthy events should therefore use the t ime-out f ie lds
when waiti ng to periodical ly re-eval uate the situation. For exam ple, process 1 waits
for an event semaphore that process 2 is supposed to post. P rocess 2 may fai l to
perform the post due to a large number of envi ronment factors. Therefore process 1

should set a t ime-out i n case process 2 cannot perform its function.

4-1 8 Appl ication Design Guide

Table 4-4 on page 4-1 9 summarize -the 1 6-bit and corresponding 32-bit semaphore
functions.

Table 4-4. 16-Bit to 32-Bit Semaphore Functions

16-Bft Name

DosSemCiear

DosSemRequest

DosSemSet

DosSemSetWait

DosSemWait

DosM uxSemWait

DosCioseSem

DosCreateSem

DosOpenSem

DosFSRamSemRequest

DosFSRamSemCiear

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

32-Bit Name

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

DosCreateMutexSem

DosOpenMutexSem

DosCioseMutexSem

DosRequestMutexSem

DosReleaseMutexSem

DosQueryMutexSem

DosCreateEventSem

DosOpenEventSem

DosCloseEventSem

DosResetEventSem

DosPostEventSem

DosWaitEventSem

DosQueryEventSem

DosCreateMuxWaitSem

DosOpenMuxWaitSem

DosCioseM uxWaitSem

.DosWaitMuxWaitSem

DosAddMuxWaitSem

DosDeleteMuxWaitSem

DosQueryMuxWaitSem

Chapter 4. Comparison of 16-Bit and 32-Bit OS/2 Functions 4-1 9

Signal l ing Events with Semaphores
Version Functions

32-bit DosCreateEventSem, DosOpenEventSem , DosCioseEventSem,
DosResetEventSem, DosPostEventSem, DosWaitEventSem,
DosQueryEventSem

Event semaphores have two basic states-posted and reset. The DosPostEventSem
function posts the semaphore if it is not posted, and i ncrements the number of
postings (unt i l the number reaches the maxi mum) . Al l threads that have used
DosWaitEventSem on this semaphore are tagged for wake-up (to resume execution) .

The DosResetEventSem function resets the semaphore, if it is not al ready reset, and
blocks a l l threads that use the DosWaitEventSem function afterwards. The
DosQueryEventSem function returns the current number of postings to the
semaphore. A count of 0 i nd icates that the semaphore is in the reset state, and
threads that wait on the semaphore are blocked.

The examples i n F igure 4-9 and F igure 4-1 0 on page 4-21 demonstrate the use of
event semaphores. A s ing le process (process 1) writes to a shared memory region.
Several processes (2 th rough n) then read the data for further processing .

Figure 4-9. Using Event Semaphores-16-Bit Version

4-20 Appl ication Design Guide

Figure 4-10. Using Event Semaphores-32-Bit Version

Using Event Semaphores Between 1 6- and 32-bit Code
New 32-bit appl ications can pass a 32-bit event semaphore handle to 1 6-bit code.
This handle can then be used by the 1 6-bit DosSemSet and DosSemCiear functions.
If DosSemSet is passed a 32-bit semaphore handle , it w i l l act exactly as if
DosResetEventSem was cal l ed with the same handle. If DosSemCiear is passed a
32-bit semaphore handle, it wi l l act exactly as if DosPostEventSem was cal led with
the same handle .

• Dos16SemCiear wi l l do a Dos32PostEventSem
• Dos1 6SemSet w i l l do a Dos32ResetSem

Using Semaphores for Mutual Exclusion
Version Functions

32-blt DosCreateMutexSem, DosOpenMutexSem, DosCioseMutexSem ,
DosRequestM utexSem, DosReleaseMutexSem ,
DosQueryMutexSem

M utual exclusion (mutex) semaphores protect critical sections of code from being
executed by more than one thread at a t ime. The threads contai n ing these critical
sections of code can belong to the same process (a private semaphore), or to
separate processes (a shared semaphore). Each process must cal l
DosRequestMutexSem before beg inn ing the critical section. If this function does not
return an error, the cal ler has ownership of the semaphore and can proceed to

Chapter 4. Comparison of 1 6-Bit and 32-Bit OS/2 Functions 4-21

execute the critical section. When execut ion of the section is complete, the same
thread must cal l DosReleaseMutexSem to give up ownership. The system wi l l �
queue requests and transfer ownershi p to the next waiti ng thread when the
semaphore is released. The semaphore also can be set when it is created, making
the operation atomic and therefore completely rel i able; with this approach, no other
thread wi l l run unti l the creating thread rel eases ownership .

The examples in Figure 4-1 1 and Figure 4-1 2 on page 4-24 demonstrate the use of
m utex semaphores. Two processes that write to a single, shared region must
coordi nate thei r activit ies so that both are not writing at the same t ime (to do so
would damage the data) . By convention, process 1 creates the semaphore, and
process 2 opens it .

Figure 4-1 1 (Part 1 of 2) . Using Semaphores for Mutual Exclusion-16-Bit Version

4-22 Application Design Guide

Figure 4-1 1 (Part 2 of 2) . Using Semaphores for Mutual Exc/usion-16-Bit Version

Chapter 4. Comparison of 16-Bit and 32-Bit OS/2 Functions 4-23

Figure 4-12. Using Semaphores for Mutual Exctusion-32-Bit Version

4-24 Application Design Guide

Using Semaphores for Multiple Waiting
Version Functions

32-bit DosCreateM uxWaitSem, DosOpenMuxWaitSem,
DosCioseMuxWaitSem, DosWaitMuxWaitSem,
DosAddM uxWaitSem, DosDeleteM uxWaitSem,
DosQueryMuxWaitSem

The m ulti p le-wait (muxwait) functions enable an appl ication to wait on more than
one semaphore at a t ime. A typical use would be in a process that requi res several
resources in order to perform its work, and that no changes occur to those
resources whi le they are in i ts possession. This is a m ulti p le-wait on m utex
semaphores. A g roup of event semaphores also can be waited on to enable a
thread or process to be activated whenever an particular event occurs (for i nstance,
a thread monitori ng three sources of i nput m ight remai n i nactive unti l one of the
sources receives i nput) . The m uxwait functions al low waiti ng for al l of the i nd icated
semaphores as wel l . Note that m utex and event semaphores cannot be m ixed i n a
m uxwait semaphore. Also, if any of the i ndiv idual semaphores are private to a
process, the m uxwait semaphore also m ust be private to that process.

The example i n F igure 4-1 3 shows a thread requesting s imul taneous ownersh ip of
several resources. This example uses unnamed, private semaphores; they also
cou ld be shared or named-shared semaphores.

Figure 4-13 (Part 1 of 2) . Using Semaphores for Multiple Waiting

Chapter 4. Comparison of 1 6-Bit and 32-Bit OS/2 Functions 4-25

Unnamed Pipes

Figure 4-13 (Part 2 of 2) . Using Semaphores for Multiple Waiting

The 1 6-bit function, DosMakePi pe, and its correspond ing 32-bit funct ion,
DosCreateP ipe, perform the same action. I n the 1 6-bit version of the operati ng
system , i t was suggested that the maxi mum size of the data passed through the p ipe
should be 64KB. This was based on the segment size maximum and the
performance overhead of usi ng a larger data size. This size restrict ion is removed
i n the 32-bit version of the operating system .

4-26 Appl ication Design Guide

/� Named Pipes

Queues

Named-pipe functions, which are J isted i n Table 4-5, perform the same actions.
Some of the 32-bit names are different. Please note that there are no equivalent
32-bit functions for DosRawReadNmPipe and DosRawWriteNm Pi pe.

Table 4-5. 16-Bit to 32-Bit Named-Pipe Functions

18-BH Name 32,.BH Name

DosCai iNmPipe DosCai i N P i pe

DosConnectNm P i pe DosConnectNPipe

DosDisConnectNmPipe DosDisConnectNPipe

DosMakeNmPipe DosCreateNPipe

DosPeekN mPlpe DosPeekNPipe

DosQNmPHandState DosQueryNPHState

DosQNmPipe lnfo DosQueryNPipelnfo

DosQNmPipeSemState DosQ.ueryNPipeSemState

DosRawReadNmPipe N/A

DosRawWriteNmPipe N/A

DosSetNmPHandlnfo DosSetNPHState

DosSetNmPipeSem DosSetNP ipeSem

DosTransactNmPipe DosTransactNP i pe
DosWaltNmPipe DosWaltNPipe

The queue functions perform the same actions i n both the 1 6..;bit and 32-bit versions
of the operat ing system . However, be aware of the fol lowing:

• Although both the 1 6.-bit and 32-bit versions of the functions are functionally
s imi lar, they do not produce compat ib le system resources; that is, you cannot
create a 1 6-bit queue and write to it by using the 32-bit DosWriteQueue function
This appJies between processes as wel l .

• Memory al location i n the 32-bit version of the operating system m ust be made
with the 32-bit li near functions. DosAI IocSharedMem m ust be used to allocate
space for messages placed i n the queue, rather than the segmented equivalent.

• If a NoWait of 1 is used when read ing (removi ng data) or peeking (determining

the data contents without removing the data) a queue, the associ ated semaphore

should be an event semaphore. A NoWait of 1 tel ls the cal l i ng function to return
if the queue has not data, rather than waiting for the queue to receive data

before returning. In addit ion, if threads i n other processes wi l l write to the
queue, the semaphore shoul d be shared (either named or unnamed) and must

be opened before the writi ng threads use DosWriteQueue. Typical ly, you will
use this semaphore as part of a m uxwait semaphore to be able to respond to any

of several i nput sources (if the thread is waiti ng for something to appear in the
queue, it should use a NoWait of 0) .

Chapter 4. Comparison of 1 6-Bit and 32-Bit OS/2 Functions 4-27

Timers

Table 4-6 l ists the queue functions.

Table 4-6. 16-Bit to 32-Bit Queue Functions

16-Bit Name 32-Bit Name
DosCreateQueue DosCreateQueue

DosOpenQueue DosOpenQueue

DosCioseQueue DosCioseQueue

DosPeekQueue DosPeekQueue

DosPurgeQueue DosPurgeQueue

DosQueryQueue DosQueryQueue

DosReadQueue DosReadQueue

DosWriteQueue DosWriteQueue

The t imer functions provide time and date access, suspend threads for a given t ime
i nterval , and run asynchronous and i nterval t imers. Changes to these functions are
m inor, resulti ng pr imari ly from changes to the semaphore functions. Ti mer
functions are l i sted i n Table 4-7.

Table 4-7. 16-Bit to 32-Bit Timer Functions

16-Bit Name

DosGetDateTime

DosSetDateTime

DosSieep

DosTimerAsync

DosTimerStart

DosTimerStop

1 6-bit

32-blt

DosTimerAsync

DosAsyncTimer

32-Bit Name

DosGetDateTime

DosSetDateTi m e

DosSi eep

DosAsyncTi mer

DosStartTimer

DosStopTi mer

These functions perform the same action. I n the 32-bit version of the operati ng
system, an event semaphore must be reset before its hand le is passed to a ti mer
function. When the t imer expi res, it wi l l post the event semaphore. If the ti mer is to
be used agai n , the semaphore m ust be reset fi rst. The semaphore can be shared or
private.

Dynamic Linking
The 32-bit functions operate in a way that is consistent with the 1 6-bit versions. The
1 6-bit funct ions, DosGetMachi neMode, DosGetVersion, and DosGetEnv have no
32-bit equivalents; these functions are unnecessary, because the 32-bit version of
the operat ing system has no fami ly appl ication programm i ng i nterface (FAPI) . The
envi ronment i nformation is in the thread i nformation block, and the version numbers
are accessib le through DosQuerySysl nfo. Table 4-8 on page 4-29 l ists the 1 6-bit
and 32-bit dynamic-l i nki ng functions.

4-28 Application Design G u ide

Table 4-8. 16-Bit to 32-Bit Dynamic-Linking Functions

16-Bit Name 32-Bit Name

DosGetResource2 DosGetResource

DosFreeMod u l e DosFreeModule

DosFreeResource DosFreeResource

DosloadModule DosloadModule

DosGetProcAddr DosQueryProcAddr

N/A DosQueryProcType

DosGetModHandle DosQueryModuleHandl e

DosGetModName DosQueryModuleName

DosQAppType DosQueryAppType

N/A DosQueryResourceSize

DosGetMachineMode N/A

BadDynlink N/A

DosGetVersion N/A

DosGetEnv N/A

1 6-bit

32-bit

DosGetResource2, DosFreeResource

DosGetResource, DosFreeResource

The 32-bit version of the operat ing system uses resources in the same way as the
1 6-bit version of the system . The paged version of DosGetResource wi l l return a
poi nter to the read-only memory that represents the resource, j ust as
DosGetResource2 d id . I n the fi rst 1 6-bit version of the system , resources were
stored i n i ndiv idual segments that cou ld be freed with DosFreeSeg. I n the second
1 6-bit version of the system , resources are a l located with DosGetResource2, which
wi l l pack several resources i nto one segment, and are freed by usi ng
DosFreeResource. Under the 32-bit version of the system , resources are a l located
with DosGetResource, which returns a 32-bit poi nter to the resource. This pointer
can be freed with DosFreeResource.

Note that the system wi l l pack mult ip le resources i nto the same pages of memory
and mark the access for those pages as PAG_READ I PAG_COM M IT.

The example i n Figure 4-1 4 on page 4-30 shows the load ing of a resource by a
program, a sample use of the resource data, and the eventual discard ing of the
resource.

Chapter 4. Comparison of 16-Bit and 32-Bit OS/2 Functions 4-29

Device 1/0

File Systems

Figure 4-14. Using Resources

The DosBeep, DosDevConf ig , and DosPhysicaiDisk functions have remained .�
basically the same. The DosCLIAccess and DosPortAccess functions are no longer
val id in the 32-bit Version of the operati ng system . The DosDeviOCtl and
DosDevi0Ct12 functions have been com bi ned i nto the DosDeviOCtl function.
Tabl e 4-9 l i sts device 110 functions.

Table 4-9. 16-Bit to 32-Bit Device 110 Functions

16-Bit Name 32-Bit Name

DosBeep DosBeep

DosCLIAccess N/A

DosPortAccess N/A

DosDevConfig DosDevConfig

DosPhysicaiDisk DosPhysicai Disk

DosDeviOCtl , DosDevi0Ctl2 DosDeviOCtl

Fi le-system functions were s ignif icantly improved in the 1 6-bit version of the system ,
with the i ntroduction of i nstal l able f i le systems, the H i g h Performance Fi le System ,
and extended attr ibutes. I n t he 32-bit version of the system , f i le-system functions
are basical ly the same. One new function has been added:
DosCancel lockRequest. This function al lows a process to cancel the lock range
request for an outstanding DosSetFi lelocks function. Table 4-1 0 on page 4-31 l i sts
the f i le-systems functions.

4-30 Application Design Guide

Table 4-10 (Page 1 of 2) . 16-Bit to 32-Bit File-System Functions �
1 6-Bit Name 32-Bit Name
DosBufReset DosResetBuffer

DosChDir DosSetCurrentD i r

DosChgFi lePtr DosSetF i lePtr

DosCiose DosCiose

DosCopy DosCopy

DosDelete DosDelete

DosDupHandl e DosDupHandl e

DosEditName DosEditName

DosEnumAttr ibute DosEnumAttr ibute

DosFi le iO N/A

� DosFi lelocks DosSetFi lelocks

DosFindCiose DosFi ndCiose

DosFindFi rst DosFindFi rst

DosFindNext DosFindNext

DosFindNotifyCi ose N/A

DosFindNotifyFi rst N/A

DosFindNotifyNext N/A

DosFSAttach DosFSAttach
�

DosFSCtl DosFSCtl

DosMkDir DosCreateD i r

DosMove DosMove

DosNewSize DosSetFI IeSize

DosOpen DosOpen

DosQCurDir DosQueryCu rrentDi r

DosQCurDisk DosQueryCurrentDisk

� DosQFHandState DosQueryFHState

DosQFi le lnfo DosQueryFi le lnfo

DosQFi l eM ode N/A

DosQFSAttach DosQueryFSAttach

DosQFSi nfo DosQueryFSinfo

DosQHandType DosQueryHType

DosQPathlnfo DosQueryPathl nfo

DosQSysl nfo DosQuerySysl nfo

DosQVerify DosQueryVerify

DosRead DosRead

DosReadAsync N/A

DosRmDi r DosDeleteDir

� DosScanEnv DosScanEnv

DosSearchPath DosSearchPath

DosSel ectDisk DosSetDefaultDisk

Chapter 4. Comparison of 1 6-Bit and 32-Bit OS/2 Functions 4-31

Table 4-10 (Page 2 of 2) . 16-Bit to 32-Bit File-System Functions

16-Bit Name

DosSetFHandState

DosSetFi l e l nfo

DosSetFi l e M ode

DosSetFsl nfo

DosSetMaxFH

DosSetPathlnfo

DosSetVerify

DosSh utDown

DosWrite

DosWriteAsync

N/A

Searching Directories
Version Functions

32-Bit Name

DosSetFHState

DosSetFi I el nfo

N/A

DosSetFSinfo

DosSetMaxFH, DosSetRel M axFH

DosSetPath l nfo

DosSetVerify

DosShutdown

DosWrite

N/A

DosCancel lockRequest

1 6-blt

32-blt

DosFi ndFi rst, DosFi ndNext, DosFindCiose

DosFi ndFi rst, DosFi ndNext, DosFi ndCiose

In the 1 6-bit version of the system , the DosFi ndFi rst and DosFi ndNext functions wi l l
return al l " normal " f i l es matching a search stri ng. (A " normal " f i le is one with no
attribute bits set.) However, fi l es marked as archived, read-only, system, or hidden,
or subdi rectories that are to be i ncl uded in the search, m ust have, at least, thei r
corresponding attri bute bits marked to be returned.

The same logic appl i es for the 32-bit version of the system , but a new flag has been
added to excl ude normal f i les from the search. When this flag is used, only f i les
match ing the set of attri bute bits selected for the search are returned. This can
i mprove local and network f i le eff ic iency. F igure 4-1 5 shows an example of code
used i n the 32-bit version of the system to f ind subdi rectories.

Figure 4-15. 32-Bit Code for Finding Directories

4-32 Appl ication Design Guide

I n addit ion, the 32-bi t version of the system has a new i nformation level avai lable to
appl ications: level 4, " Retu rn Al l EAs." (EAs refer to extended attributes.) ResultBuf
is undefined on i nput but on output, it wi l l contain a packed set of records that
consist of the attributes record described i n l evel 1 , fol l owed by an FEAList (ful l
extended attribute l i st) structure that contains al l the extended-attribute i nformation
for the f i le. The l ength f ield of this FEA l ist is valid , giving the size of the FEA-I ist
buffer.

Querying File Mode
Version Functions

1 6-blt

32-bit

DosQFi l eMode

DosQueryfi le lnfo

The attribute i nformation returned by DosQFi leMode i n the 1 6-bit version of the
system should be obta ined by usi ng i nformation l evel 1 . Use l evel 2 with
DosQueryfi le lnfo in the 32-bit version of the system.

Querying System Information
Version Functions

16-blt

32-blt

DosQSyslnfo

DosQuerySyslnfo

In the 32-bit version of the system , a new system constant describ ing the maximum
size of a path-name component has been added. Appl ications that hard-coded this
value to 255 with the 1 6-bit version of the system can now request this i nformation
from the system . The system can now change the value without causing the
appl i cation to change.

Reading Asynchronously
Version Functions

16-bit

32-blt

DosReadAsync

No equ ivalent

This function does not exist i n the 32-bit version of the system. An appl ication that
cannot afford to be blocked dur ing a read operation should create a separate thread
for the read ing process and post an event semaphore when the read ing is complete.
For example, an appl i cati on m ay be hold i ng serial ization over a shared resource. If
the appl icat ion is b locked because of a synchronous read request, all other
requestors of the seria l ization wi l l also be b locked unti l the 1/0 i s completed. This
cou ld lead to a potentia l ly serious performance degradation.

Setting the File Mode
Version Functions

16-bit

32-blt

DosSetfi leMode

No equivalent

In the 32-bit version of the system , use DosSetfi le lnfo with i nformation-level 1 to

change the f i le mode.

Chapter 4. Comparison of 16-Bit and 32-Bit OS/2 Functions 4-33

Setting Available Number of Fi le Handles
Version Functions

DosSetMaxFH 16-blt

32-blt DosSetMaxFH, DosSetRei MaxFH

The maxi mum number of fi l e handles avai lable to a process (and, by default, its
chi l d processes) can be set with DosSetMaxFH. I n the 32,..bit version of the system,
processes can adj ust the maximum number i n a relative fashion (by i ncrementing or
decrementi ng the current value regardless of what the current value is) , al lowing a
more natural i nterface for a l locating and deal locat ing the resource. Also, by
specify ing a relative change of zero handles, a process can query the current
maxi mum.

Writing Asynchronously
Version Functions

1 6-blt

32-blt

DosWriteAsync

No equivalent

This function does not exit i n the 32-bit version of the system . An appl ication that
cannot afford to be blocked duri ng a write operation should create a separate thread
for the writi ng process and post an event semaphore when the writi ng is complete.

Message Retrieval
Table 4-1 1 l ists the 1 6-bit and 32-bit message-retrieval functions.

Table 4-1 1 . 16-Bit to 32-Bit Message-Retrieval Functions

1 6-Bit Name 32-Bit Name

DosGetMessage DosGetMessage

DoslnsMessage DoslnsertMessage

DosPutMessage DosPutMessage

N/A DosQueryMessageCp

Code-Page Management
Table 4-1 2 l ists the 1 6-bit and 32-bit code-page functions.

Table 4-12. 16-Bit to 32-Bit Code-Page Management Functions

1 6-Bit Name 32-Bit Name

DosSetCp N/A

DosSetProcCp DosSetProcessCp

DosGetCp DosQueryCp

DosGetCtryl nfo DosQueryCtryl nfo

DosCaseMap DosMapCase

DosGetDBCSEv DosQueryDBCSEnv

DosGetCol l ate DosQueryCol l ate

4-34 Appl ication Design Guide

Session Management
Sessions are g roups of processes that together "own" a virtual screen. A vi rtual
screen refers to a physical hardware monitor that is emulated to all types of
appl ications: DOS, VIO, AVIO, and PM. I n genera l , only fu l l -screen vi rtual i nput
output (VIO) app l ications use session management APis; all PM appl ications run
i nside the PM session and do not normal ly cal l any session functions.

Table 4-1 3 l i sts the 1 6-bit and 32-bit session-management functions.

Table 4-13. 16-Bit to 32-Bit Session-Management Functions

1 6-BII Name 32-Bit Name

DosStartSession DosStartSession

DosSetSession DosSetSession

DosSelectSession DosSelectSession

DosStopSession DosStopSession

DosSM RegisterDD N/A

Error Management

Signals

A process can use error-management functions to d isable hard-error and exception
notification to the user, preferring i nstead to deal with the errors. I n the event of an
error, an appl ication then can ignore the error, recover from the error, and prov.ide
a more descriptive i ndication of error status or a more user-friendly error m essage.
I n this way, the appl i cation can have a more detai led understand ing of the error
than the system and therefore can "fi ne tune" the correct action in response to the
error. In the 32-bit version of the system , the i nformation is encoded as binary flags
(bit 0 is 1 to enable hard-error pop-up messages; bit 1 is 1 to enable exception
pop-up messages) . In both versions, the default is to enable exception and
hard-error pop-up messages. Table 4-14 1 ists the 1 6-bit and 32-bit
error-management functions.

Table 4-14. 16-bit to 32-bit Error Management Functions

1 6-Bit Name 32-Bil Name

DosErrCiass DosErrCiass

Dos Error DosError

Signals have been impl em ented i nto the exception-management architecture. The
s ignals 1 CTRL + C 1 , 1 CTRL + BREAK 1 , and 1 KILLPROCESS 1 have been defi ned as
s ignal exceptions.

The 1 6-bit s ignal functions are OosHoldSignal , OosSetSigHandler, and
DosSendSignal . There are no equ ivalent 32-bit functions.

Chapter 4. Comparison of 1fl.,Bit and 32-Bit OS/2 . Functions 4-35

Exception Management
In the 1 6-bit version of the operati ng system , s ignals are dispatched from a number
of sources and are used to i nterrupt execut ing processes. These s ignals i nclude
"CTRL + C, " "CTRL + BREAK, " and " KILLPROCESS."

I n the 32-bit version of the operating system , s ignal handl ing has been merged with
exception hand l i ng to provide a general , portable, mechanism for hand l i ng al l such
events. Four new system functions are defined for exception hand l i ng on a
per-thread basis:

• DosRaiseException()
• DosSetExceptionHandler()
• DosUnsetExceptionHandler()
• DosUnwindException()

Appl ications can register thei r own routi nes (by using DosSetExceptionHandler) to
handl e specific types of exceptions, i ncl ud ing general protection exceptions that
cannot be trapped by appl ications under previous versions of the operating system .
I nstead of requ i ring that exception handlers b e written i n assem bly language (as i s
the case with the 1 6-bit version of the operating system) , they can now b e written i n
a h igh-level language, such as C.

I n the 32-bit version of the operati ng system , general protection exceptions can be
handled with i n the app l ication. This a l lows an appl ication to recover or at least to
termi nate i n an orderly manner.

The DosSetSignaiExceptionFocus function is used by 32-bit appl ications to i nform
the operat ing system that it is ready to receive s ignals. However, these signals are
dispatched and treated as exceptions. This general ized approach enables
exception handlers to be chai ned, nested, or both. Exceptions can then be handled
by the fi rst exception handler i n the chai n , or passed to subsequent handlers. The
fact that these exception handlers can be written in a h igh-level language reduces
dependencies on the 80386 architecture, and eases the port ing of app l ications to

·

other operati ng systems and hardware platforms.

Table 4-1 5 l ists the 1 6-bit and 32-bit exception-management functions. There are
few correspond ing 1 6-bit exception-management functions.

Table 4-15. 16-Bit to 32-Bit Exception-Management Functions

1 6-Bit Name 32-Bit Name

DosSetVec N/A

N/A DosSetExceptionHandler

N/A DosU nsetExceptionHandler

N/A DosRaiseException

N/A DosUnwindException

N/A DosSendSignai Exception

N/A DosSetSignai ExceptionFocus

N/A DosAcknowledgeSignai Exception

N/A DosEnterM ustComplete

N/A DosExitM ustComplete

4-36 Application Design Guide

VDD Services
The 32-bit version of the system al lows protect-mode processes to request services
di rectly from a vi rtual device d river (VDD). The new functions shown in Table +16
support this capabi l ity.

Table 4-16. 32-Bit VDD Services

16-Bit Name 32-Bit Name
N/A DosOpenVDD

N/A DosRequestVDD

N/A DosCioseVDD

Support for 1 &;.Bit Subsystems
OS/2 2.0 provides support for the fol lowing 1 6-bit subsystems:

Vio (video subsystem)
Kbd (keyboard subsystem)
Mou (mouse subsystem)
Mon (device-monitor subsystem)

The functions of these subsystems are descri bed in the OS/2 Version 1 .3
Programming Tools and Information.

Changes to Presentation Manager Services

Changes to PM services can be categorized as new functions and as obsolete 16-bit
functions. Some 1 6-bit PM functions do not exist i n the 32-bit PM function set, but
are are sti l l avai lable to 1 6-bit appl ications runn ing u nder the 32-bit version of the
system. New functions are for 32-bit appl i cations only.

The 1 6-bit functions that are not i ncluded in the 32-bit PM function set are as follows:
• Heap Management

Wi nCreateHeap
Wi nDestroyHeap
WinAI IocMem
Wi nAva i i Mem
WinFreeMem
Wi nlockHeap
Wi nReal locMem

Note: These functions are replaced by 32-bit memory-m anagement
functions.

• I nsta l led Program List

PrfCreateGroup
PrfDestroyGroup
PrfAddProgram
PrfRemoveProgram
PrfChangeProgram
PrfQueryProgramCategory
PrfQueryProgramHandle
PrfQueryProgramTit les
PrfQueryDefi nit ion
Wi nAddProgram

Chapter 4. Comparison of 1 6-Bit and 32-Bit OS/2 Functions 4-37

Printing

Wi nCreateGroup
Wi n lnstStartApp
WinQueryDefi nit ion
WinQueryProgramTit les
WinTermi nateApp

Note: These functions are replaced by new workplace functions.

• I n it ial ization Fi le

WinQueryProfi l eData
WinQueryProfi le lnt
Wi nQueryProfi leSize
WinQueryProf i leString
WinWriteProfi leData
WinWriteProfi l eString

Note: These functions have been replaced by 32-bit profi l e functions.

• Window Locking.

Wi nlockWi ndow
Wi nlockW�ndowUpdate
Wi nQueryWi ndowlockCount

Note: These functions have no corresponding 32-bit versions.

• Window Management

WinRegi.sterWinDestroy

Note: This function has been replaced with a hook

New 32-bit PM functions are avai lable for printi ng, appl i cation i ntegrat ion and object
management, customizi ng. hel p i nformation, 32-bit m igration, standard dia logs, and
dragging and d ropping objects. In addition , a new set of controls and hooks, as wel l
as hel per macros, have been defi ned.

Appl ications can control print spoo l ing local ly and on a network with Spooler
functions. Spooler functions enable appl ications to manipulate printer objects (pri nt
dest inations or pri nters, pri nt jobs, and pri nt queues) . Appl ications can add, delete,
query, and modify any pri nter object. Appl ications also can i nterrupt or continue
jobs or groups of jobs, and can purge al l jobs from a queue.

Spooler functions remain the same except for name changes. Table 4-1 7 on
page 4-39 l ists the functions.

4-38 Appl ication Design Guide

Workplace

Table 4-1 7. Version 2.0 Print Functions

1 6-Bit Name

DosPri ntDestControl

DosPri ntDestAdd

DosPri ntDestDel

DosPri ntDestEnum

DosPri ntDestGetl nfo

DosPri ntDestSetl nfo

DosPri ntJobDel

DosPrintJobEnum

DosPri ntJobPause

DosPri ntJobGetld

DosPri ntJobGetlnfo

DosPri ntJobConti nue

DosPri ntJobSetlnfo

DosPri ntQAdd

DosPrintQDel

DosPri ntQEnum

DosPri ntQPause

DosPri ntQPurge

DosPri ntQGetlnfo

DosPri ntQConti nue

DosPri ntQSetlnfo

DosPrintDriverEnum

DosPri ntPortEnum

DosPri ntQProcessorEnum

32-Bit Name

SpiControi Device

SpiCreateDevice

SpiDeleteDevice

SpiEnum Device

SpiQueryDevice

SpiSetDevice

SpiDeleteJob

Spi EnumJob

Spi HoldJob

SpiQueryJobld

SpiQueryJob

Spi ReleaseJob

SpiSetJoblnfo

SpiCreateQueue

SpiDeleteQueue

SpiEnumQueue

Spi HoldQueue

SpiPurgeQueue

SpiQueryQueue

Spl ReleaseQueue

SpiSetQueue

SpiEnum Driver

SpiEnumPort

SpiEnumQueueProcessor

Appl ications can def ine objects and what user actions the appl ications wi l l perform
on those objects. PM provides default hand l i ng for objects. Table 4-1 8 on
page 4-40 l i sts the new object-management functions.

Chapter 4. Comparison of 16-Bit and 32-Bit OS/2 Functions 4-39

Table 4-18. OS/2 2.0 Workplace Functions

Name

WinCreateObject

WinDeregisterObjectCiass

WinDestroyObject

WinEnumObjectCiasses

Winfreefi lelcon

Winloadfilelcon

WinRegisterObjectCiass

WinReplaceObjectCiass

WinRestoreWindowPos

WinSetfi lelcon

WinSetObjectData

WinShutdownSystem

WinStoreWindowPos

Customizing Help Information

Function Description

Create an object class

Remove a workplace object class

Delete a workplace object

Return a l ist of al l workplace object classes that have

been registered

Free the pointer to an icon allocated by Winloadfi lelcon

Return a pointer to an icon which is associated with the

fi le specified

Register a workplace object class

Replace a registered class with another registered class

Restore the size and position of the window specified

Set the icon for the specified fi le

Set data on a workplace object

Close down the system

Save the current size and position of the specified

window

The I nformation P resentation Fac i l i ty (IPF) m anages on l ine, context-sensitive help
i nformation. It displays both text and g raphics and p rovides hypertext l i nks
(selectable words or phrases that connect related i nformation) with i n and between
i nformation units. Enhancements to IPF for the 32-bit version of the system i nclude
new tags that provide:

• Mu ltip le-vi ewport support.

• Device-independent g raphics support through metafiles. A m etafi l e is a generic
name for the definit ion of the contents of a g raphics fi le .

• Horizontal scrol l i ng in he lp windows.

• M u lt ip le text fonts and s izes.

• Hypertext l inks across fi l es.

In addit ion, authors can customize help i nformation with:

• Appl ication-contro l led v iewports: for animation, ful l-motion video, simu lations,
and so on.

• Dynamic data formatting (DDF) : for d isplaying dynamic help i nformation.

Customized help i nformation is created from a tagged source fi l e that defines each
help window (includ ing help , next, p revious, search, print, and other buttons) , and

from appl ication code that is executed by IPF when it processes specific tags in the �
tagged source fi le . Tab le Table 4-1 9 on page 4-41 summarizes the new IPF tags.

4-40 Application Design Guide

32-Bit M igration

Table 4-19. New IPF Tags

Name Tag Description

:acviewport Enables an appl ication to dynamical ly control what is
displayed i n an IPF window

:br Causes a b reak i n a l i ne of text

:ddf Display dynam ical ly formatted text in an
appl ication-control l ed wi ndow

:docprof Specif ies the head i ng-level entries to be d isplayed i n the
Contents wi ndow

:font Changes the font to the specif ied typeface, size, and
code page.

:table Formats i nformation as a table

:title Provides a name for the on l ine document

I n addit ion, dynamic data formatt ing is accompl ished through a new set of functions.
Tabl e Table 4-20 summarizes the new DDF functions.

Table 4-20. Version 2.0 DDF Functions

Name

DdfBegi n list

DdfBitmap

DdfEndlist

DdfHyperText

Ddflnform

Ddfln itial ize

Ddflistltem

DdfMetafi l e

DdfPara

DdfSetColor

DdfSetFont

DdfSetFontStyle

DdfSetFormat

DdfSetTextAi ign

DdfText

Function Description

Begi n a defi n it ion l ist

Place a reference to a bit map in the DDF buffer

End a definit ion l ist

Define a hypertext l i nk to another panel

Define a hypertext i nform l i nk

I n it ial ize the IPF i nternal structures for dynamic data
formatting and returns a DDF handle .

I nsert a defin it ion l ist entry i n the DDF buffer

Place a reference to a metafi le i n the DDF buffer

Create a paragraph with i n the DDF buffer

Set the background and foreground colors of d isplayed
text

Specify a text font in the DDF buffer

Specify a text font style in the DDF buffer

Turn formatting off or on

Define whether l eft, center, or r ight text j ustification is to
be used when the text formatting is off.

Add text to the DDF buffer

I n a m ixed-model envi ronment, 1 6-bit code i nteracts with 32-bit code, and 1 6-bit

wi ndow procedures send messages to 32-bit window procedures. For

system-defi ned messages, P M performs the necessary translation through a thunk

layer. For user-defi ned messages, however, appl ications must create 1 6-bit to

32-bit thunk procedures to manage 1 6-bit wi ndow-message parameters, to convert

1 6-bit segmented poi nter parameters to 32-bit f lat poi nters and, if necessary, to

convert structures poi nted to by parameters. Appl ications provide the thunking

layer through new m igration functions, which are l i sted i n Table 4-21 on page 4-42.

Chapter 4. Comparison of 1 6-Bit and 32-Bit OS/2 Functions 4-41

Table 4-21 . Version 2.0 Migration Functions

Name Description

Wi nQueryWi ndowMode Query the memory model associ ated with a wi ndow

WinSetWi ndowThunkProc Set a thunk procedu re for a window

Wi nQueryWi ndowThunkProc Query a thunk procedu re for a window

Wi nSetCi assThunkProc Associ ate a thunk procedu re with a wi ndow class

WinQueryCiassThunkProc Query the poi nter-conversion procedure associated with
a wi ndow class

Standard Font-and Fi le-Dialog Boxes
In OS/2 2.0, PM provides functions that enable appl ications to create standard font
and f i l e d ialog boxes. Standard d ialogs boxes across appl ications save appl ication
code and i ncrease user productivity through a consistent i nterface. Standard
d ialogs boxes are extendable (appl ications can add controls) and customizable
(appl ications can change button text, wi ndow tit le text) .

Fi l e d ialog functions request fi l e names from users and perform fi l e-name
val idation . Appl ications i n it ial ize f ie lds and fi lter stri ngs, and can specify modal or
nonmodal d ialog boxes and s ing le or m ulti p le-fi l e selections. A fi le d ialog can be
i m plemented as either an Open or a SaveAs dialog. The fol lowing f igures are
examples of these two d ialogs.

Figure 4-16. Open Dialog

4-42 Application Design Guide

Figure 4-1 7. SaveAs Dialog

Font d ialog boxes request font definitions from users, provide preview windows, and
return font face names, point size, boldness, and other specifications. Appl ications
can specify modal or nonmodal d ia logs, color selection functions, and s ing le or
mult ip le font selection. F igure 4-1 8 shows a sample font d ialog box.

Figure 4-18. Font Dialog

Table 4-22 l i sts the new font-and fi l e-dia log functions.

Table 4-22. Font and File Dialog Functions

Name

WinFi leDig

WinFontDi g

Description

Create and display the fi l e d ia log box and return the
user's selection or selections

Al low a user to select a font

Chapter 4. Comparison of 16-Bit and 32-BH OS/2 Functions 4-43

Window Controls
The fol lowi ng new window controls have been defi ned for PM i n OS/2 2.0: notebook,
contai ner, value set, and s l ider.

Notebook
This wi ndow control organizes access to mult ip le g roups of controls. The overal l
appearance of this control is a notebook. An appl ication can dynamical ly i nsert or
delete pages, specify colors for d ifferent notebook areas, and resize parts of the
notebook. The content of each page is defi ned and managed by the appl ication.
F igure 4-1 9 shows an example of a notebook control wi ndow.

Figure 4-19. Notebook Control Window

Figure 4-20 l ists the window class, styles , and m essages associated with this new
wi ndow control .

Figure 4-20 (Part 1 of 2) . Control Window Classes, Styles, and Messages

4-44 Application Design Guide

Figure 4-20 (Part 2 of 2) . Control Window Classes, Styles, and Messages

Container
A container control is a visual component whose specific purpose is to hold objects.
A container can display objects i n various formats and views. Each v iew general ly
presents d ifferent i nformation about each object.

This wi ndow control displays and processes the user's selection of objects.
Selection can be defined as autoselect, extended select, marquee select, m ulti p le
select, or s ing le select. This control supports d i rect manipu lation of objects,
enabl i ng users to drag an object from a container wi ndow and drop it on another
object or container wi ndow. Figure 4-21 on page 4-46 shows an exam ple of a
container contro l .

Chapter 4 . Comparison o f 1 6-Bit and 32.:Bit OS/2 Functions 4-45

� Sales Reports
� 1 991

,. Host Connect

Sales Reports g Install 1 980·1 990 ·-

Figure 4-21 . Container Control Window

Figure 4-22 l i sts the wi ndow class, styles and messages associated with this new �
wi ndow contro l .

Figure 4-22 (Part 1 of 2) . Container Control Window Classes, Styles, and Messages

4-46 Application Design Guide

Figure 4-22 (Part 2 of 2) . Container Control Window Classes, Styles, and Messages

Chapter 4. Comparison of 1 6-Bit and 32-Bit OS/2 Functions 4-47

Value Set
A val ue-set control is a visual component that enables a user to select one choice
from a g roup of m utual ly-excl usive choices. A val ue set can use graphic images (bit
maps or icons) , as wel l as colors, text, and numbers, to represent the items that a
user can select. An appl ication can specify d ifferent types of items, sizes, and
orientat ions for i ts value sets. F igure 4-23 shows an example of a val ue-set contro l .

Figure 4-23. Value-Set Control

Figu re 4-24 1 ists the window class, styles , and messages associated with this new
window contro l .

Figure 4-24 (Part 1 of 2) . Value-Set Control Window Classes, Styles, and Messages

4-48 Appl ication Design Guide

Figure 4-24 (Part 2 of 2) . Value-Set Control Window Classes, Styles, and Messages

Slider
A sl ider control enables a user to set, d isplay, or modify a value by moving a sl ider
arm. The appearance of a s l ider, and how the user uses it , i s sim i lar to a scro l l bar.
However, they are not i nterchangeable because each has a d ist i nct purpose. The
scro l l bar makes visib le i nformation that is outside a window's c l ient area; the s l ider
i s used to set, d isplay, or m odify i nformation , whether i t is in the c l ient area or not.
Appl ications can specify d i fferent scal es, s izes, and orientations for i ts sl iders.
Figure 4-25 shows an example of a s l ider control .

Decibel Range

Detent -----,
0 1 0 20 30 40 50 Tick Mark---��· �·!mt..l..ltm!m!!!�·�·��'mmm�!m!!!�·' ·b1"'· ___ _ wm �W.%2. _,... Slider Buttons

Slider Arm Slider Shaft

Figure 4-25. Slider Control

Figure 4-26 l i sts the window class, sty les, and messages associated with this new
window contro l .

Figure 4-26 (Part 1 of 2) . Slider Control Window Classes, Styles, and Messages

Chapter 4. Comparison of 16-Bit and 32-Bit OS/2 Functions 4-49

Figure 4-26 (Part 2 of 2) . Slider Control Window Classes, Styles, and Messages

4-50 Appl ication Design Guide

Pop-Up Menus
I n OS/2 2.0, PM provides a function, Wi nPopupMenu, that enables an appl ication to
display a pop-up menu. A pop-up menu is a menu that, when requested, is
displayed next to the object with which it is associated. It contai ns choices
appropriate for a given object or set of objects in thei r current context.

-Desktop Background

Hooks

In OS/2 2.0, PM provides functions that enables appl i cations to f i l l the desktop
background with a specified bit map. Bit maps can be centered, ti led , or scaled i n
the desktop background. The desktop background functions are
Wi nSetDesktopBkgnd and WinQueryDesktopBkgnd. These functions wi l l only work
when the Workplace Shel l is not active, and can be used by an appl ication that
replaces the shel l .

I n OS/2 2.0, PM provides new wi ndow-manager hook capabi l i t ies. Appl ications can
apply message f i l te ri ng when WinGetMsg, WinPeekMsg, or Wi nWaitMsg is cal led
through the hook, CheckMsgFi lterHook. This enables appl ications to examine new
messages in the main event loop between the time they retrieve the message from
the queue and the ti me they dispatch it, perform ing special processing as
appropriate. Appl ications also can fi lter the window-destroy process with the hook,
DestroyWi ndowHook. This hook is cal l ed after the WM_DESTROY message is
processed but before the wi ndow handle becomes i nval id . It replaces the
WinRegisterWi ndowDestroy function.

Paths, Regions, and Bit Maps
In OS/2 2.0, PM provides new functions for paths, reg ions, and bit maps:

• Paths can be converted i nto regions.
• More operations can be performed on regions.
• Areas can be easi ly fi l l ed .
• A b i t map can be copied from storage to a b i t map i n a device context.

Table 4-23 l ists these new functions.

Table 4-23. Path, Region, and Bit Map Functions

Name -Function Description

Gpi D rawBits Draw a rectangl e of bits

GpiFioodFi l l F i l l a n area bounded by a g iven color, o r whi le o n a
g iven color

GpiFrameRegion Draw a frame i nside a reg ion using the current pattern
attributes

Gpi PathToRegion Convert a path i nto a reg ion

Fonts and Characters
In OS/2 2.0, PM provides new functions that g ive appl ications g reater abi l ity to

i nqu i re about logical fonts and face names, the abi l ity to modify the default font, and

extra character spaci ng for text j ustification. Table 4-24 on page 4-52 l ists the new

functions.

Chapter 4. Comparison of 16-Bit and 32-Bit OS/2 Functions 4-51

Table 4-24. Font and Character Functions

Name Function Description
GpiLoadPubl icFonts Load one or more fonts from the specif ied resource f i le ,

to be avai lable for a l l appl icati ons

GpiQueryCharBreakExtra Return the current value of the character-break-extra
attr ibute

GpiQueryCharExtra Return the current val ue of the character-extra attri bute

GpiQueryCharOutl i n e Return t h e drawing order o f a character outl i n e

GpiQueryFaceString Generate a compound face name for a font

GpiQueryLogicaiFont Return the descr iption of a logical font

GpiSetCharBreakExtra Specify an extra i ncrement to be used for spacing break
characters in a stri ng , for example, space characters

GpiSetCharExtra Specify an extra i ncrement to be used for spacing
characters i n a str ing

GpiUn loadPubl icFonts Unload one or more general ly-avai l able fonts

Polylines

Table 4-25. Polyline Functions

Name Function Description

Gpi Polyl i n eDisj o i nt Draw a ser ies of disjo int straight l ines using the
end-po i nt pai rs specif ied

Transformations

Table 4-26. Transformation Functions

Name Function Description

GpiConvertWith M atrix Convert an array of coord i nate pai rs from one coord i nate
space to another, usi n g the suppl i ed transform matrix

PM Helper Macros
A set of he lper macros is defi ned i n the PMWIN.H header f i les for OS/2 2.0 PM .
These macros s impl ify programm i ng for button , l i st-box, and menu controls.
Previously, programmers had to set up complex parameters to send messages to
the control windows in order to modify l ist-box items, menu items, and so on. The
new macros provide the code expansions for these com plex functions. Table 4-27
on page 4-53 1 ists the new hel per macros.

4·52 Application Design Guide

.�

�

�

Table 4-27. PM Helper Macros

Name Function Description

Wi nCheckButton Set the checked state of the specif ied button control

Wi nCheckMenultem Set the check state of the specif ied menu item

W i n Deletelboxltem Delete an i ndexed item form the List Box

WinEnableControl Set the enable state of the item in the dialog temp l ate

WinEnableMenultem Set the state of the specified menu item

W i n l nsertlboxltem I nsert text i nto a List Box at i ndex

Win lsContro iEnabled Return the state of the specif ied item i n the dialog
tem p l ate

W i n lsMenultemChecked Return the state of the identified menu item

W i n lsMenultem Enabled Return the state of the menu item specif ied

Win lsMenultemVal id Return TRUE i f the specif ied item is a val id choice

Wi nQueryButtonCheckState Return the checked state of the button control specif ied

Wi nQuerylboxCount Return the number of items in the List Box

WinQuerylboxltemText Fi l l the buffer with the text of the i ndexed item

WinQuerylboxltemTextlength Return the l ength of the text of the indexed item in the

Wi nQuerylboxSelectedltem

WinSetlboxltemText

Wi nSetMenultemText

List Box

Return the i ndex of the selected item in the List Box

Set the text of the List Box i ndexed item to buffer

Set the text for Menu i ndexed Item to buffer

Chapter 4. Comparison of 16-Bit and 32-BH OS/2 Functions 4-53

Summary

Many Control Program funct1ons have been renamed, rep laced, or enhanced. The
new gu idel i nes used to name functions ensure compl iance with Get, Set, and Query
semantics used i n PM-5AA conventions, the use of action verbs before nouns, and
the use of consistent semantics for si m i lar actions. Some 1 6-bit functions have been
redesigned for the 32-bit envi ronment, in particular memory-management,
semaphore, and signal functions.

Control P rogram functions that have changed in the 32-bit version of the operating
system i nclude:

• Memory management functions
• Thread and Process functions
• Semaphore functions
• Pipe, queue, and timer functions
• Dynamic l i nk ing functions
• Device 1 /0 functions
• Fi l e system functions
• M essage retrieval functions
• Code-page management functions
• Session managementfunctions
• Error management functions
• Signal functions
• Exception management funct ions
• VDD services functions

Many 1 6-bit PM functions have been replaced by new functions in the 32-bit function
set, whi l e others are no longer avai lable. The functions which are no longer
avai lable affect the fol lowing areas:

• Heap management
• I nstal l ed program l i st
• I n it ial ization fi le
• Window locki ng

New functions are avai lable for:

• P ri nti ng
• Workplace
• Customiz ing help i nformation
• 32-bit m ig ration
• Standard d ialogs
• Pop-up menus
• Desktop background
• Paths, regions, and bit maps
• Fonts and characters
• Polyl i nes
• Transformations

In addit ion, new wi ndow controls, hook capabi l it ies, and helper macros are
provided.

4-54 Application Design Guide

Chapter 5. Dynamic Linking

This chapter descri bes:

• Stat ic vs. Dynamic Li nking
• Dynamic l i nk l i brary Data
• Dynamic l i nk l i brary I n it ial ization and Term i nation
• Bu i ld ing a dynamic l i nk l i brary (DLL)
• Use of protected memory by DLLs

Static vs. Dynamic Linking

© Copyright IBM Corp. 1 992

Most programmers are fam i l iar with static l i nki ng; an appl ication cal ls a rout ine or
procedure whose code is not found i n the appl ication's source fi le . The routi ne is
external to you r source fi l e and is declared as such. When the source fi l e is
comp i led, the compi ler places an external reference for the rout ine i n the
appl ication's object f i le . To create the executable fi le for the appl ication, the
appl ication's object fi l e is l i n ked with an object f i le that contai ns the code for the
rout ine. The result is an .EXE fi le that contai ns the appl ication code, as wel l as a
copy of the code for the routi ne. Figure 5-1 i l l ustrates the process of bui ld ing a
statical ly-l i nked appl ication .

My _Application .OBJ

EXTERNAL
Your_Routine

CALL ???; Your_Routine

Your_Library.OBJ

PUBLIC
Your_Routine

Your_Rout ine :

Figure 5-1 . Static Linking

My _Appl ication . EXE

CALL XXX

xxx: You r_Routine :

5-1

When OS/2 2.0 l oads a statical ly- l inked program, al l the code and data are
contained i n a single executable f i le and the system can load it al l i nto memory at �
once.

The advantages and d isadvantages of static l inking are summarized in Table 5-1

Table 5-1 . Why Static Linking?

Advantages Disadvantages

Comp i l e i n pieces External routines bui lt i nto EXE (making
EXEs larger)

Can c reate l ibraries of routines that can EXE cannot be changed without re-l inking
be l inked with appl ications

External routines cannot be shared
(dupl icate copies of l ibraries)

Dynamic l inking al l ows several appl ications to use a single copy of an executable �
module. The executable module is completely separate from the appl ications that
use it. Several functions can be bui lt i nto a DLL, and appl ications can use these
functions as if they were part of the appl i cation's executable code. You can change
the dynamical ly-l i nked functions without recompi l i ng or rel i nking the appl ication.

The advantages of dynamic l inking are:
Reduced memory requirements

Many appl ications can use a single DLL sim ultaneously. Since only one copy of
the DLL is i n memory, this saves memory space, and i n general , the code is �
discardable.
Simplified application modification

An appl ication can be enhanced or modified by sim ply changing a DLL. For
example, if an appl ication uses a DLL to support video output, several displays
can be supported by d ifferent Dlls. The appl i cation can use the DLL that
supports the appropriate display.

Flexible software support

Dlls can be used for after-market support. I n the display-driver example, a new
DLL can be provided to support a display that was not avai lable when the
appl ication was shipped. S im i larly, a database appl i cation can support a new
data-fi l e format with a new DLL.

Transparent migration of function

The DLL functions can be used by appl ications without any understanding of how
the functions actually do thei r work. Future changes to the DLL are transparent
to the appl i cation, as long as the i nput and output parameters remain the same.

5-2 Application Design Guide

Multiple programming language support

A function i n a DLL can be used by an appl ication written i n any programming
language, as long as the appl ication understands the function's cal l i ng
convention.

Application-controlled memory usage

Appl ications can make decisions about which DLL routines they wish to load i nto
memory and use. If a DLL is not used, it does not have to be loaded.

DLLs can be used to i mplement subrouti ne packages, subsystems, and i nterfaces to
other processes. I n OS/2 2.0, some DLLs:

• Are i nterfaces to the kernel

The worker routines for the OS/2 API reside in the OS/2 kerne l . Appl ications,
which run at privi l ege level 3, can usual ly make d i rect cal ls to the kernel , which
runs at privi l ege level 0. Some cal ls, however, m ust be l i nked through a DLL.
For example, an appl i cation that cal ls DosOpen is l i nked to the DLL
DOSCALL 1 .DDL. This l i brary contai ns the defi n it ions for some system functions.
When a system function is cal led, OS/2 2.0 makes the cal l to the kernel on behalf
of the appl ication.

• Are i nterfaces to devices

DLL subsystems can vi rtual ize devices and manage the device for i ts c l ients.

• Provide an open system architecture for software

Add-ons to OS/2 2.0 can be provided easi ly and by anyone.

OS/2 2.0 provides two variet ies of dynamic l i nking: load-time and run-time. I n
load-ti me dynamic l i nking, references are resolved when a n appl ication is loaded.
I n run-time dynamic l i nk ing, references are resolved when the appl ication runs.

Load-Time Dynamic Linking
Load-t ime dynamic l i nki ng is si m i l ar to stat ic l i nk ing in that an appl ication can cal l a
routi ne that is not found i n the appl ication's source fi le . I n load-ti me dynamic
l i nk ing, however, an appl i cation is l i n ked with a l i brary fi l e that contai ns a record
that descri bes where the rout ine can be found i nstead of with a f i le that contains the
code for the rout ine. The result ing appl ication executable fi l e contai ns this record
and not a copy of the routi ne's code. F igure 5-2 on page 5-4 i l l ustrates the process
of bu i ld ing a load-ti me dynamical ly-l i nked appl i cation.

I n the example in F igure 5-2 on page 5-4, the .L IB f i le contai ns a record that
descri bes where the code for a set of functions can be found . I n th is case, the code
for the function Your_Rout ine can be found in the fi le , or module , Your_Routines.DLL
under the entry poi nt name Your_Routi ne. (The entry poi nt name does not have to
match the funct ion name.) The function code can also be referenced by i ts ord inal
value.

Chapter 5. Dynamic Linking 5·3

My _Application.OBJ

��-

x

-

t

-

e

-

rn

_

a

_
1

--------------��
Your_Routine ,,.,

Call ???; Your_Routine

Your_Library. LIB

function name:

Your_Routine

module name:

Your _Routines

entry point

ordinal value: 1

entry point name:

Your_Routine

Figure 5-2. Dynamic Linking

.. ·· ·

My _Application. EXE

CALL ???

Reference to

Your _Routine . 1

Your_Routine.

You r_Routine

:·····
O:·: ··

When the appl ication is loaded, the system resolves the dynamic-l i n k references, as
shown i n F igure 5-3 on page 5-5.

5-4 Application Design Guide

�

�

My _Application. EXE

/

CALL ???

Reference to

Your_Routine. 1

Your_Routine.

Your_Routine

I

I
My_Application code

/ �.
Call yyy

yyy:

-

/ I I LOAD 1 I
I

� yyy:

Your_Routine.DLL

/
Entry Table

1
. . · - · · · · · · · · · · · · · · · · · ·- ���� �� '®

.J..
You r _Routine:

l
Other · code

Your _Routine:

Figure 5-3. Resolving Dynamic Link References

If a program contains dynamical ly-l inked references, the system must process the
i nformation in the references. If the DLL is al ready in memory, the system sim ply
adds i nformation to the executable code so that the code can use the DLLfunctions.
If the requi red Dlls are not al ready in memory, OS/2 2.0 searches the path
specified by the LIBPATH envi ronment variable. If the system cannot fi nd the Dlls,
it stops loading the appl ication and reports the error. If the system finds the Dlls, it
l oads them. When DLLs are loaded i nto memory, OS/2 2.0 notifies the appl i cation
where the DLL functions can be found.

Chapter 5. Dynamic Linking 5-5

When a DLL is loaded i nto memory is determ i ned by how the DLL was bui lt . A DLL
is bu i lt l i ke an appl i cation , using a module-defin it ion (.DEF) fi le . The CODE �
statement i n a . DEF fi l e descri bes the attri butes of appl i cation or DLL code. The
load option for the CODE statement determ i nes when appl ication or DLL code is
loaded:

PRELOAD

LOADONCALL

Run-Time Dynamic Linking

Code is loaded as soon as a process accesses the DLL. This
leads to i ncreased performance (in terms of accessi ng the
DLL functions) whi l e decreasing avai lable memory. This
option m ight be preferable if there is no more than one
program runn ing .

Code is loaded when needed. This is the recommended
choice, and the default .

When an appl ication conta ins a reference to a DLL, the DLL is loaded i nto memory
when the appl ication is loaded (un less the DLL is al ready i n memory) . If the
appl ication uses functions in several DLLs, al l of those DLLs are loaded i nto
memory. Some appl i cations may use functions i n several Dlls but use only a few
of them at any one t ime. For example, an app l ication that supports many different
pri nters or plotters may use functions in many Dlls but need only one of them at a
t ime, dependi ng on the pri nter or plotter the appl i cation is supporti ng. If the user
switches to a different pri nter or plotter, another DLL wi l l be used, but the fi rst w i l l
remain i n memory. Loadi ng DLLs th is way can be very wasteful .

To avoid th is problem, appl ications can take advantage of run-t i me dynamic l i nk ing
in OS/2 2.0 and load and unload Dlls as they are requ i red. The process of bui l d i ng
a run-tim e dynamical ly l i nked appl i cation is si m i lar to the process of bu i ld i ng a
load-t ime dynamical ly l i nked appl i cation. However, the .EXE for a run-ti me
dynamical ly l i nked appl ication does not contai n a record descri b ing where the
external routi nes can be found. Instead, the appl i cation exp l icit ly tel ls OS/2 2.0
when to load and free the dynamic l i nk module .

Appl i cations load and un load DLLs and cal l funct ions whose code reside in those
DLLs by:

1 . Cal l i ng DosloadModu le to get a handle to the DLL module .

This function a lso loads the DLL i nto memory, or attaches to it , if i t is al ready
loaded.

2. Cal l i ng DosQueryProcAddr to get a poi nter to a function with i n the DLL.

3. Cal l i ng the function i nd i rectly through the poi nter returned by
DosQueryProcAddr.

4. Cal l i ng DosFreeModu le to free the handle to the DLL module .

When a l l handles to the DLL module have been freed, the DLL is un loaded from
memory.

An app l ication can also request i nformation about a DLL from the system . The
appl ication can use the DosQueryModuleHand le funct icn to determi ne whether a
DLL has al ready been loaded i nto memory. The DosQueryModuleName function
returns fu l l path i nformation for the DLL f i le .

5-6 Appl ication Design Guide

DLL Data

The advantages of run-ti me dynamic l i nk ing are:

Memory is consumed as needed.

Dlls can be loaded and un loaded as they are used. Unused Dlls do not have to
be loaded i nto memory, and memory can be released when the appl ication has
f in ished using the DLL.

Applications can recover from DLL NOT FOUND

Appl ications can make decisions. If a load-ti me DLL cannot be found, the
appl ication term i nates immediately. If a run-ti me DLL cannot be found, the
appl ication receives an error value from the DosloadModu le function, and it can
then use another DLL or specify a ful l path for the DLL. If a function is not
avai lable, the DosQueryProcAddr funct ion returns an error val ue, and the
appl ication can take appropriate action.

DLL and function names can be variable.

An appl ication program mer does not have to know the names of the Dlls the
appl ication wi l l be usi ng or the names of the functions with i n the DLL. The
appl ication can read the names of the DLL or the functions from a configuration
fi l e or obta in the names from user-suppl i ed i nput.

DLLs can be anywhere.

The appl ication can specify the fu l l path for the DLL. Load-t ime Dlls m ust be i n
a d i rectory i n the path specif ied by the L IBPATH envi ronment variable, but
run-ti me Dlls can be in other d i rectories.

Most Dlls w i l l conta in some data. Whereas DLL code is shared by all processes
that use it, DLL data can be shared or not shared by al l processes that use it. Data
that is specif ic to each process that uses the DLL (that is, to each i nstance of the
DLL) is cal led instance data . Data that is shared by al l processes that use the DLL
is cal l ed shared or global data.

The fi rst t i me a process references a DLL (and it is loaded or i ts usage count is
i ncremented because it is al ready loaded) , a separate copy of the DLL's i nstance
data is created. Modifications to the i nstance data for one process do not affect the
i nstance data for any other process. The system , however, mai ntains only one copy
of a DLL's shared data for a l l processes that use the DLL. Every process that uses
the DLL can access the same data. If one process modifies the data (i ncrements a
count, for example) , the data wi l l be modified for a l l processes that use the DLL.

Because changes to shared DLL data by one process are visi b le to the DLL code
when cal led by another process, shared data provides Dlls with a mechanism for
tracki ng processes that use it . This is crucial to subsystems, which are Dlls that
manage resources (for example, devices, queues, and so on).

There is usual ly only one data and one code object, or segment, def ined in a C

source f i le . This means that a DLL that has i nstance and shared data is bu i l t from
more than one C source fi l e, with a default automatic data segment and with named
data segments. How data is defi ned is determ i ned by how the DLL is bui lt . A DLL is

Chapter 5. Dynamic Linking 5·7

bu i lt l i ke an appl i cation, using a .DEF f i le . The DATA statement i n a .DEF fi l e
describes the attributes of appl i cation or DLL data. Fol lowing is a l ist of the
avai l ab le options for the DATA statement:

Options

MULTIPLE

SINGLE

READ WRITE

READONLY

LOADONCALL

PRELOAD

/
Process

/

A

Result

OS/2 2.0 creates a unique copy of the automat ic data segment
for each process that uses the DLL. Modifications made by
one process do not affect any other process. This is the
default.

OS/2 2.0 creates only one automatic data segm ent for al l
processes that use the DLL. If one process modifies the data,
the data wi l l be modified for al l processes that use the DLL.
Enables you to read from or write to the automatic data
segment. This is the default.

Enables you to only read from the automatic data segment.

The automatic data segment is loaded i nto memory as
needed. This is the default.

The automatic data segment is loaded as soon as a
processes accesses a DLL.

, L 1 I Process B

�?
Dynamic Link ::

Functions

/ I ::-:-�
� Shared �

Data
r--

/ 1 Process B �::
o.

/ A ,.:. : Process

Instance
,.

Data

Figure 5-4. DLL Data

You can also create a DLL with both shared and i nstance data. For more
i nformation, see " Using Shared and I nstance Data" on page 5-1 3

5-8 Appl ication Design Guide

DLL Initial ization and Termination

Building Dlls

A DLL is i n it ial ized and termi nated by the default _DLL_In i tTerm function. When a
process gains access to the DLL, this function i n it ia l izes the necessary envi ronment
for the DLL, i ncl uding storage, semaphores, and variables. When the process frees
its access to the DLL, the _DLL_InitTerm function termi nates the DLL envi ronment
created for that p rocess. The _DLL_In itTerm funct ion is cal l ed automatical ly when
you l i nk to the DLL.

The _DLL_In i tTerm function can be executed once, when the DLL is f i rst loaded i nto
memory, or it can be executed each t ime a new process f i rst accesses the DLL. The
L IBRARY statem ent in the module-defi n it ion f i le is used to specify when the
_DLL_I n itTerm function is to be executed. Fol lowing is a l ist of of the avai lable
options for the L IBRARY statement.

Options

INITINSTANCE

INITGLOBAL

TERMINSTANCE

TERMGLOBAL

Result

The _DLL_InitTerm function is cal led the fi rst t ime the DLL is
loaded for each process that accesses the DLL.

The _DLL_In i tTerm funct ion is cal l ed only the very fi rst t ime
the DLL is loaded. Th is is the default .

The _DLL_In itTerm function is cal led the last t ime the DLL is
freed for each process that accesses the DLL.

The _DLL_In itTerm function is cal led only the fi nal t i me the
DLL is freed . This is the default .

As an example, the fol lowi ng statement,

Figure 5-5. Specifying when to Execute the Initialization and Termination Function

identifies the executable fi l e as a DLL and specifies that SAMPLE03 is the name of
the DLL. It also specifies that the _DLL_InitTerm function is to be cal led the fi rst
t ime the DLL is loaded for each process that cal ls the DLL and the l ast tim e the DLL
is freed for each process that cal ls the DLL.

When OS/2 2.0 starts execut ing a DLL, i t sets the CPU registers to known val ues, but
only for 1 6-bit DLLs. Al l 32-bit DLLs are cal led with a stack frame, l i ke al l other API
cal ls.

I n it ial ization/termination functions can be written in a high l evel l anguage. For
more i nformation on writ i ng your own i n it ial ization/termination function, see
"Creat ing an I n it ial izat ion/Termi nation Function" on page 5-1 3.

Bu i ld ing a DLL is not very different from bu i ld ing a conventional static l i brary. The
fol lowing sections show how you can use OS/2 tools and functions to create,
manage, and use DLLs.

Chapter 5. Dynamic Linking 5·9

External Function References
When you compi le or assemble an appl ication, the compi ler or assembler generates
an object module for the code i n the appl ication. If you use any functions that are
external to your appl ication (thei r code is in another object modu le) , the compi ler or
assembler adds an external function reference to you r appl ication's object module .

The L inker resolves these external references. If the L inker fi nds the external
function in a l i brary cal led an i m port l i brary or in an IMPORTS statement in the
appl ication's modu le-defi nit ion fi le , the code for the external function is in a DLL. To
resolve external references to Dlls, the Linker s imply adds i nformation to the
executab le fi l e that tel ls the loader where to fi nd the DLL code when the appl ication
is loaded.

Module-Defin ition Files

Import Libraries

The modu le-def in it ion f i le is an i mportant tool for bu i ld ing Dlls. This fi l e contai ns
i nformation that tel ls OS/2 2.0 the name of the DLL, when to load the DLL, how to
manage memory for the DLL, and when to i nitia l ize the DLL.

When you create a DLL, the module-defin it ion fi l e m ust contai n a l i st of al l the
functions in the DLL that can be cal led by an appl ication (or by another DLL). You
specify these external functions by usi ng an EXPORTS statement in the
module-defi nit ion f i le .

You m ust a lso tel l the L inker where to f ind the external functions i n you r appl ication .
If the functions are i n a DLL, you can use an I MPORTS statement i n the
modu le-defi nit ion fi l e for the appl ication to tel l the L inker where to f ind the DLL
functions. You can also use an i mport l i brary to tel l the Li nker where to find you r
DLL functions.

A conventional l i b rary contains object modu les for a number of functions. The
l i brary is a convenient way to manage a large number of modu les and use them i n
you r executable code by l i nking to the l i brary. The Li nker uses the external
references in your object modu le to determ i ne which modu les must be pu l led out of
the l i brary.

An i mport l i brary does not contai n any object modules. I nstead, the i mport l i brary
contai ns i nformation that tel ls the L inker what Dlls are used by your appl ication
and the location of the functions your appl ication uses with i n each DLL.

L ike a conventional l i b rary, an i mport l i brary is primari ly a convenience. I nstead of
specify ing a l l the functions you r app l ication i mports i n i ts modu le-defi nit ion fi le , you
can si m ply l i nk with the i mport l i brary and let the L inker resolve the external
references in your object module .

You use i mport l i braries every ti me you comp i le and l i nk a program that uses the
OS/2 API . A l l the OS/2 functions are i m plemented i n Dlls, and OS2386.L IB is
si m ply an i mport l i b rary that tel ls the L inker where to f ind each OS/2 function.

For more i nformation about modu le-defin it ion f i les and i mport l i b raries, see the
onl i ne Tools Reference i n the OS/2 2.0 Developer's Tool kit.

5-1 0 Appl ication Design Guide

Creating a Simple DLL
Dlls are typically used to provide common functions that can be used by a number
of app l ications. Figure 5-6 shows a C source fi le, MYPUTS.C, for a DLL that
contains a sim ple string-printing function.

Figure 5-6. A Simple DLL

Figure 5-7 shows the module-definition f i le, MYPUTS.DEF, for this DLL.

Figure 5-7. Module-Definition File for Simple DLL

The LIBRARY statement names the DLL (MYPUTS.DLL). The DATA statement tel ls
the system that this DLL wi l l share al l data with each process that uses the DLL.
The EXPORTS statement i nd icates that the function myPuts can be used by
appl i cations and Dlls.

The DLL is compi l ed and l inked l i ke any appl ication. You can use IBM's ICC and
LINK386, as shown below, to create MYPUTS.DLL.

Figure 5-8. Compiling and Linking a Simple DLL

When the DLL has been created, you m ust copy it to one of the di rectories i ndicated
by the LIBPATH envi ronment variable i n your CONFIG.SYS fi le .

Chapter 5 . Dynamic Linking 5-1 1

Importing DLL Functions
After you create a DLL, you can use it in an appl ication . F igure 5-9 shows a C
source fi le , USEPUTS.C, that uses the myPuts function contained i n the DLL
MYPUTS.DLL.

Figure 5-9. Using a Simple DLL

The module-definit ion fi l e for USEPUTS.C tel ls OS/2 2.0 where to fi nd the myPuts .�

funct ion. This modu le-defi nit ion f i le (USEPUTS.DEF) contai ns the i nformation shown
i n Figure 5-1 0.

Figure 5-10. DEF File for Application Using a DLL

The module-defi nit ion f i le tel ls OS/2 2.0 that USEPUTS i mports the myPuts function
from MYPUTS.DLL. USEPUTS.C is compi led and l i nked as shown below.

Figure 5-1 1 . Compiling and Linking an Application

Using an Import Library
You can also create an i mport l i brary for your DLL. If you do this, you can l i nk
appl ications with your DLL without expl icit ly declari ng the i mports for each
appl ication . OS/2 2.0 uses th is technique for the appl ication programm i ng i nterface
(API) . When you l i nk your appl ications with OS2386.LIB , you are usi ng an i mport
l i brary.

To create the i mport l i brary STRINGS. LIB from MYPUTS.DLL, you use the I mport
Li brary Manager (IMPLIB) , as shown below.

Figure 5-12. Creating an Import Library

5-1 2 Appl ication Design Guide

You can then l ink your app l ications with STRINGS.L IB to resolve references to the
myPuts function, as shown below.

Figure 5-13. Linking with an Import Library

Note that a module-defi nit ion file for USEPUTS.C is optional i n th is example,
because we are l i nking with an import l i brary.

Using Shared and Instance Data
When you create a DLL, you can use the DATA statement i n the module-definit ion
fi l e to def ine the default attributes for data segments with i n the DLL. The default
condit ion is for the DLL to have a unique copy of the automatic data segment for
each process. You can specify DATA MULTIPLE READWRITE in the
module-definit ion f i le to cause OS/2 2.0 to create a separate copy of al l the DLL data
for each process that uses the DLL (i nstance data) . Modifications made by one
process do not affect other processes.

You can also specify different attr ibutes for different sets of data by using the
#pragma data_seg and #pragma al loc_text d i rectives to defi ne your own data and
code segments. You can l ist the segments in the module-defin it ion fi l e under the
head i ng SEGMENTS, and specify attr ibutes for each.

Figure 5-14. Specifying Data Segments with Different Attributes

Any segments that you do not specify under SEGMENTS are given the attri butes
specified by the DATA or CODE statement, dependi ng on the type of segment.

Creating an Initialization/Termination Function
I t may be necessary for a DLL to perform some tasks before an appl ication accesses
a DLL or after an app l ication f inishes accessi ng a DLL. For example, the l i brary
may need to al locate a heap or open a device prior to usi ng a DLL or deal locate a

heap or close a device after usi ng a DLL. You can handle these tasks i n an

i nit ial ization/termination funct ion. The i n it ial i zation/term i nation function can be

cal l ed on to perform i nit ial ization tasks when the DLL is fi rst loaded or each ti me a

new process accesses the DLL, depend ing on the L IBRARY statement i n the

module-defin it ion f i le. If you specify IN ITGLOBAL in the L IBRARY statement, the

i n i t ia l ization/term ination function is called only once, when the DLL is fi rst loaded

i nto memory. This is the default sett ing . If you specify I N ITINSTANCE, the l i brary

funct ion is cal l ed each t ime the DLL is accessed by a new process. I n the same

way, the i n it ial ization/termination function can be cal led on to perform term i nation

tasks. If you specify TERMGLOBAL in the L IBRARY statement, the

i n it ia l ization/termination funct ion is cal l ed only once, the f i nal time the DLL is freed.

This is the default setti ng. If you specify TERMINSTANCE, the l i b rary function i s

cal led each ti me the DLL is freed for each process that accesses the DLL.

Chapter 5. Dynamic Linking 5-1 3

When a thread cal ls DosloadModu le to load a DLL, the i nit ial ization routi nes of the
l oaded DLL (and the i nit ial ization routi nes of the Dlls that i t loads) w i l l run on the �
thread that cal led DosloadModule . This i nit ial ization wi l l complete before
DosloadModule returns.

The prototype for the _DLL_In itTerm function is :

Figure 5-15. Prototype for the _DLL_InitTerm Function

If the val ue of the flag parameter is 0, the DLL envi ronment is i n it ial ized. If the
val ue of the flag parameter is 1 , the DLL env i ronment is ended . The modhandle
parameter is the module handle assigned by the operat ing system for th is DLL. The
module handle can be used as a parameter to various OS/2 API cal ls . For example,
DosQueryModu leName can be used to return the ful ly-qual ified path name of the
DLL, which tel ls you where the DLL was loaded from. �

The return code from _DLL_In itTerm tel ls the loader if the i n i t ia l ization or
term i nation was performed successfu l ly. If the cal l was successfu l , _DLL_In itTerm
returns a nonzero value. A return code of 0 i nd icates that the function fai led. If a
fai l u re is i nd icated, the loader w i l l not load the program that is accessi ng the DLL.

Before you can cal l any C l i brary functions, you m ust fi rst i n it ia l ize the C run-ti me
envi ronment. To i n it ia l ize the envi ronment, use the function _CRT_i nit . The
prototype for this function is:

Figure 5-16. Prototype for the _CRT_init Function

If the run-ti me envi ronment is successful ly i n it ial ized, _CRT_i nit returns 0. A return
code of -1 i ndicates an error. If an error occurs, an error message is written to f i le
handle 2 , which is the usual desti nation of stderr.

To properly termi nate the C run-t ime envi ronment, use the function, _CRT_term . .�
The prototype for th is function is:

Figure 5-1 7. Prototype for the _CRT_term Function

Because _DLL_In itTerm is cal l ed by the operati ng system , it m ust be comp i led using
the system l i nkage. In the IBM C Set/2 compi ler, the fol lowing #pragma d i rective is
used to specify the system l i nkage:

Figure 5-18. Specifying the System Linkage

5·1 4 Appl ication Design Guide

The i n it ia l ization/termination function m ust have a specific entry poi nt. You cannot
create a function with a specif ic entry poi nt i n the C programming language, so the
i n it ial ization function must be written in assem bly language. You can, however,
write a very sim ple i n it ial ization funct ion in assem bly language and have it
i mmed iately j ump to a C funct ion. F igure 5-1 9 shows an assembly language
i n it ial ization function entry poi nt.

Figure 5-19. A DLL Initialization Function Entry Point

The fol lowi ng f igure shows a sample i n it ial izat ion/termi nation function written i n C.
This code was written usi ng the IBM C Set/2 compi ler. If you use another comp i ler,
some of the #pragmas or keywords may need to be changed.

Figure 5-20 (Part 1 of 3) . A DLL Initialization Function

Chapter 5. Dynamic Linking 5-1 5

Figure 5-20 (Part 2 of 3) . A DLL Initialization Function

5-1 6 Application Design Guide

.·�

�

"�

Figure 5-20 (Part 3 of 3) . A DLL Initialization Function

You can also write the i n it ial ization/term i nation funct ion enti rely i n assembly
language, without j umpi ng to a C funct ion. For th is case, the l i b rary i n it ial ization
registers are defi ned as fol lows:

EIP

ESP

cs
DS = ES = SS

FS

GS

EAX = EBX

ECX = EDX

Library entry address

User program stack

Code selector for base of l i near address space

Data selector for base of l i near address space

Note: Al l 32-bit protected memory l i brary modu les w i l l be given a
GOT selector i n the DS and ES registers (ProtDS) that addresses
the fu l l l i near address space avai lable to an appl ication. This
selector should be saved by the i n it ial ization routi ne.
Non-protected memory l i brary modu les wil l receive a selector
(F iatDS) that addresses the same amount of l i near address space
as an appl ication's .EXE f i le .

Data selector of the base of the Thread I nformation Block (TIB)

Is equal to 0

Is equal to 0

Is equal to 0

Chapter 5. Dynamic Linking 5-1 7

ESI = EDI

EBP

[ESP + O]

Is equal to 0
Is equal to 0
Return address to system , and EAX = return code

[ESP + 4] Module handle for the l ibrary module
[ESP + 8] Is equal to 0 (for i nitial ization)

A 32-bit l ib rary may specify that i ts entry point address is the 1 6-bit object code. In
this case, the entry registers are the same as for entry to a l i brary using the
segmented .EXE format. This means that a 1 6-bit l ib rary may be rel inked to take
advantage of the benefits of the l inear . EXE format (such as more efficient paging).

The l i brary termi nation registers are defined as fol lows:
EIP

ESP

cs
DS = ES = SS

FS

GS

EAX = EBX

ECX = EDX

ESI = EDI

EBP

[ESP + O]

[ESP + 4]

[ESP + 8]

library entry address
User program stack
Code selector for the base of the l inear address space
Data selector for the base of the l i near address space
Data selector of the base of the Thread I nformation Block (TIB)
Is equal to 0
Is equal to 0
Is equal to 0
Is equal to 0
Is equal to 0
Return address to the system
Module handle for the l i b rary module
Is equal to 1 (for termi nation)

Note: library termination is not al lowed for l i braries with 1 6-bit entries

Linking at Run Time
So far, the examples in this chapter have used load-time dynamic l inking. With
load-t ime l i nking, OS/2 2.0 loads the Dll contain ing the i mported functions when it
loads the . EXE f i le. If OS/2 2.0 cannot f ind the necessary Dll, it terminates the
appl i cation and reports the error.

Run-time dynamic l inking al lows an appl ication to load a Dll i nto memory when it
is requ i red, and to remove the Dll when i t is no longer needed. The appl ication
uses the DosloadModule function to load the Dll i nto memory (if it is not al ready
loaded) . If the system cannot f ind the Dll, the appl ication receives an error value
and can take appropriate action (for example, the appl ication might use another Dll
or search another d i rectory) .

Once the appl ication has loaded the Dll, it can use the DosQueryProcAddr function
to obtain a pointer to the requi red function (or functions) . The appl ication can then
use the function. When the Dll is no longer requ i red, the appl ication can use the
DosFreeModule function to remove the Dll from memory. If there are other
appl ications using the Dll, it remai ns in memory unti l the last appl ication frees the
Dll.

5-1 8 Application Design Guide

An appl ication can specify a fu l l path for the run-tim e DLL. If you specify the ful l
path name, you can have two DLLs with the same name loaded at the same ti me, as
i n C : \052\DLLFI LE . DLL and C : \OS2\DLL\DLLFI LE . DLL. If the path is not specified, OS/2
2.0 assumes the DLL has the extension . DLL and looks for the f i le i n the di rectories
specified by the L IBPATH envi ronment variable. Figure 5-21 uses the run-ti me
dynamic-l i nking functions to access the myPuts function i n the MYPUTS.DLL
dynamic l i nk l i brary.

Figure 5-21 . Using A Runtime Dynamic-Linked Library

Protected Memory Use

OS/2 2.0 provides shared l i brary support i n the form of 32-bit DLLs. A l l 32-bit
dynamic l i nks or APis are cal led usi ng near CALL or RET i nstructions, so the cost of
maki ng dynamic-l i nk cal ls should be s ign if icantly less than the cost of maki ng the
com parable cal ls in the 1 6-bit version of the operating system , where a far CALL is
requ i red. The DLLs execute i n the context of the cal ler.

Al l 32-bit DLLs are mapped i nto the appropriate shared memory region of the
request ing processes at load ti me and execute at ring 3 without IOPL. This model 's
protection characteristics correspond closest to the r ing 3 dynamic l i nk ing model in

Chapter 5 . Dynamic Linking 5-1 9

the 1 6-bit version of the operat ing system . F igure 5-22 on page 5-20 shows how
32-bit DLLs are i m plemented i n the l i near memory model of OS/2 2.0. �

4G f-/-------<4',

51 2M r--

8

3-�_

te

_

B

�-
t

-:-:-�---ll�
Call

Near

��
,.

:::: ..
Ret ,
Near '�

32 Bit EXE

0 '-----------'

Figure 5-22. A 32-Bit DLL

However, si nce 32-bit EXE programs can address the enti re address space with a
32-bit offset, it is easier for a 32-bit app l ication programmer to potent ia l ly cast a bad
poi nter to data i n the shared region than in the 1 6-bit segmented addressing
scheme. S i nce many subsystems have semaphores and other shared data
structures in the shared reg ion , the potential for an i nadvertently errant appl ication
to affect another process sharing a subsystem becomes an i ssue in the f lat
envi ronment. Therefore, OS/2 2.0 provides a mechanism for DLLs to protect thei r
crit ical shared global data regions from 32-bit EXEs. This mechanism prevents a
thread i n one process f rom potentia l ly affecti ng other processes usi ng the same
resources (subsystems) , or potentia l ly taki ng down the enti re workstation if the
subsystem compromised is a crit ical subsystem (such as PM) .

OS/2 2.0 provides the capab i l i ty for existi ng 1 6-bit DLLs and new 32-bit DLLs to get
thei r shared global data a l located i nto a s ing le protected region that is not
accessib le by 32-bit EXEs, thereby achieving a l evel of protect ion. Note that there is
no provision for protect ing DLLs from each other or from threads execut ing 1 6-bit
EXE modules. The MEM MAN CONFIG.SYS l i ne supports a
" PROTECT/NOPROTECT" option as fol lows for enabl i ng or d isabl i ng memory
protect ion:

Figure 5-23. Enabling Memory Protection for DLLs

If neither PROTECT or NOPROTECT is specified, the default is protect ion enabled
(PROTECT) .

5-20 Application Design Guide

When protection is enabled, the memory manager reserves a 64M region of the
l inear address space below the 512MB l ine. This region is cal l ed the protected
region. Protected objects are al located with in the protected region. The fol lowing
types of memory are considered protected:
DLL Global Data Global data that is part of the OLL image when loaded.

This is only g lobal shared data, not i nstance data.
Although OLL code is shared, it is not a l located in the
protected region since it is read-only.

DLL Runtime Shared Data Global data that is a l located at runtime by a thread
executing in OLL code that is a protected API. This
i ncludes 1 6- and 32-bit, named and unnamed, shared
memory, and shared memory al located with
OosAIIocSeg wtth the share f lag set.

The OS value that is used for the user address space (FiatDS) no longer references
a descriptor with a 512MB l im it. I nstead the system exports another OS val ue for
the user address space cal led the ProtDS that does have the 512MB l imit-the
FlatDS l imit is reduced by the size of the protected region: When a 32-bit EXE is
executing, it runs with the FlatDS and is unable to access protected objects created
by 1 6-bit, 32-bit, or 1 6- and 32-bit OLLs. If the thread cal ls a 1 6-bit OLL API entry
point, the OLL wi l l have addressabil ity to the protected region through the LOT. If
the thread cal l s a 32-bit OLL entry point that is a protected one, the 32-bit OLL entry
point contai ns code to switch to the ProtDS so that the protected region is
accessi ble-the 32-bit OLL switches back to the FlatDS before completing service. A
switch on the C compi ler is used to generate the code sequence as shown i n
F igure 5-24.

Figure 5-24. Accessing Protected DLL Data

Note that although SS is not loaded with the ProtDS, a subsystem that switches
stacks to a protected stack must write some assembler code to change ESP-thus
the subsystem should also setup SS to be the ProtDS when performi ng the stack
switch.

When protection is not enabled, FlatDS = ProtOS and the code sti l l works the same.
Note: The system is not currently sensitive to whether parameters are being
val idated relative to the FlatDS or the ProtDS when ring 0 kernel APis are cal led.
Also the 32-+1 6 thunks do not probe 32-bit parameters before converting them and
passing them to a 1 6-bit OLL.

Chapter 5. Dynamic Linking 5-21

DLL Side Effects

The grouping of protected al locations can be enabled or d isabled on a per DLL
basis. For 32-bit DLLs, the L inker uses the PROTECT parameter in the .DEF fi l e to �
provide protection i nformation i n the DLL's modu le flags to the loader. A l l 1 6-bit
modu les requ i ri ng protection m ust be specif ied with the new PROTECT1 6
CONFIG.SYS parameter.

Figure 5-25. Using the PROTECT16 Parameter

Note that the .DLL suffix is not requ i red. Only . DLL f i les can get the protection.

Dynamic l i nk routi nes are not processes. They run on the thread of the cal l i ng
process and therefore don't own resources. Any resource that they obtai n or use is
owned by the cal l i ng process. Authors of DLLs should be careful not to needlessly
al locate resources unti l the resource is requ i red by the cal l i ng process to perform
the requested function. They should also free the resource as soon as i t is
determ i ned that the resource is no longer requ i red.

A dynamic l i n k routi ne that obtai ns and uses resources should attempt to m in im ize
the use of a process resources. For example, stack space should be conserved. If
an appl ication redi rects f i le handle 5 and cal ls a DLL entry that expects fi l e hand le 5
to be an open handle to an associated device driver, unexpected results wi l l occur.

If the routi ne opens an abundance of fi le handles, it may consider i ncreasi ng the
maxi mum number of f i l e handles, so that the process maximum is not exceeded.
However, i ncreasing the maxi mum number of f i l e handles for a process also
i ncreases the maxi mum number of f i l e hand les for al l processes created by the
current p rocess. This wi l l cause addit ional memory to be consumed and could
cause problems for an appl i cation that assumes a l i m i t of 20 f i le hand les. Also, i t
should be noted that appl ications have the abi l i ty to redi rect f i le handles.

Dynamic l i nk routi nes should also not make system cal ls that affect the cal l i ng
process envi ronment. If a DLL changes a process's current d i rectory, another �
thread runn ing u nder the same process cou ld fai l a fi l e 1/0 cal l if it assumes a g iven
worki ng d i rectory.

Appl ications and DLLs should not make cal ls to other DLLs, i ncluding system DLLs,
with i n a critical section. Si nce DLLs can use semaphores to synchronize threads
with i n a process or between processes, cal l i ng a DLL with i n a critical section could
cause appl ication deadlocks. This would occur if the DLL requests a semaphore on
behalf of the cal l i ng thread and another thread with in the process owns the
semaphore. Because the cal l i ng thread is in a crit ical sect ion and is the only thread
with i n the process that is al lowed to execute, the semaphore wi l l never be freed,
causi ng a deadlock.

5-22 Application Design Guide

Summary

There are two types of l i nk ing: static and dynamic. Static l i nking enables a
program's code and data to be contai ned i n a s ingle executable f i le , enabl i ng the
system to load it all i nto memory at once. Dynamic l i nk ing a l lows several
appl i cations to use a s ingle copy of an executable module, si nce the executable
module is completely separate from the appl ications that use it .

The advantage of dynamic l i nk ing are:

• Reduced memory requ i rements
• Simpl ified appl ication modificat ion
• Flexib le software support
• Transparent m igration of functions
• Mult ip le programm i ng language support
• Appl ication control led memory usage

OS/2 2.0 provide two types of dynamic l i nk ing: load-time and run-time. In load-ti me
dynamic l i nki ng, an appl ication is l i nked with a l i brary fi l e that contai ns a record that
descri bes where the rout ine can be found i nstead of with a fi l e that contai ns the
code for the routi ne. The DLL can be loaded as soon as a process accesses the DLL
or when needed. In run-ti me dynamic l i nking, the EXE for an appl ication does not
conta in a record descri b ing where the external routi nes can be found. I nstead, the
appl ication expl icitly tel ls OS/2 2.0 when to load and free the dynamic l i nk module .

DLL data can be shared or not shared by a l l processes that use i t .

Chapter 5 . Dynamic Linking 5-23

5-24 Application Design Guide

Chapter 6. Multiple Virtual DOS Sessions

Overview

This chapter describes:

• The d ifferences between the OS/2 1 .X real mode DOS Box and 2.0 Enhanced
DOS Session

• Vi rtual device driver architecture, and how the behavior of vi rtual device drivers
are affected by Enhanced DOS Session operations.

Si nce the i ntroduction of OS/2 Version 1 .0 in 1 987, the DOS compati bi l ity mode has
remai ned relatively unchanged. The 1 6-bit OS/2 DOS Mode, based on the 80286
architecture, runs as a real mode task i nside the protect mode envi ronment of
Version 1 .X of the operat ing system. Enhanced DOS Sessions i n OS/2 2.0 is a total ly
redesigned DOS compatib i l i ty envi ronment, which extends the DOS compatib i l i ty
features of the operat ing system by exploit i ng the vi rtual 8086 mode of the 80386
and 80486, result ing i n a better i m plementation of DOS.

Most users consideri ng a switch to OS/2 2.0 demand that the operat ing system
provide a DOS com patib le envi ronment to run thei r favorite DOS appl ications. OS/2
2.0 enables users to not only use thei r favorite DOS appl ication, but also to have
m ult i p le DOS sessions runn ing concurrently.

With a design based on the Vi rtual 8086 mode, OS/2 2.0 maintai ns a protected
system envi ronment, even whi le runn i ng DOS appl ications. This enhances system
i ntegrity and makes i t poss ib le to mul titask DOS appl ications with OS/2 app l ications,
so DOS programs can cont inue to execute in the background. OS/2 2.0 also a l lows
DOS app l ications to display i n wi ndows under the control of PM.

Enhanced DOS Sessions

© Copyright IBM Corp. 1992

Version 1 .X of the OS/2 operati ng system is based on the capab i l i t i es of the 80286
processor; therefore, the only practical way to run a DOS appl ication is as a real
mode task. This is primari ly because i n the 1 6-bit version of the operati ng system ,
DOS appl i cations address code and data i n memory usi ng a segment:offset address
format, based on the earl ier 8088/8086 processors. OS/2 appl ications, however, are
written to run i n protect mode, and use the selector:offset address format. To run a
DOS appl ication si m ultaneously with many OS/2 appl i cations, the system switches
between real mode and protect mode when necessary.

OS/2 2.0 is designed to fu l ly exploit the advanced features of the 80386 processor. A
major i nnovation i n the 80386 is support for executi ng m ulti p le 8086 (or 8088) tasks
with i n the 80386 protect mode envi ronment. An 8086 task i n th is envi ronment is
cal led a Vi rtual 8086 (V86) task. I n OS/2 2.0, this V86 task is a DOS Session, which
runs as a s ing le-threaded V86 mode process. Each DOS Session in OS/2 2.0 is
managed as a s ing le-process session. The OS/2 scheduler controls task-switchi ng
i n m uch the same way as an OS/2 appl ication process.

6-1

Figure 6-1 on page 6-3 provides a comprehensive v iew of the OS/2 2.0 structure
with the Enhanced DOS Session kernel and Vi rtual Device Drivers (VDD) shown i n
relation to the OS/2 kernel and Physical Device Drivers (POD). Key components of
the OS/2 and Enhanced DOS Session kernel are shown, with a schematic of how
these com ponents i nteract with each other. Fol lowing is a description of some of
these key com ponents:

DOS Session: The i nstance of a s ing le Vi rtual 8086 mode process runni ng on an
80386 or 80486 processor, that is emulat ing a l l DOS operati ng system functions and
providi ng a compatib le envi ronment. Several Enhanced DOS Sessions can be
mu ltitasked using the task switching features of the 80386 and com pat ib les.

Enhanced DOS Session Kernel: Composed of the fol lowi ng three major
components, Enhanced DOS Session kernel controls the state and operation of
mu lt ip le DOS Mode sessions (the actual number of sessions that you can create
depends on the amount of space that you have avai lab le on your swapfi l e partit ion;
if you have enough space avai lable, you may be able to create more than 50
sessions):

• DOS Session Manager: The DOS Session Manager creates, i n it ial izes, and
term i nates DOS Sessions. The DOS Session Manager provides various system
services to vi rtual device drivers. These services are known as Vi rtual Device
Hel per functions. The DOS Session Manager manages system resources (that
is, memory, t imers, semaphores, f i les) for al l DOS Sessions.

• 8086 Emulation: Performs 8086 i nstruction decod ing, controls the 80386
processor's 1/0 Privi l ege Map for each DOS Session, manages the reflection of
software i nterrupts for each DOS Session, routes IN/OUT i nstruction traps to the
appropriate v i rtual device driver, and manages various control structures
requ i red by each v i rtual device driver.

• DOS Emulation: Emulates the function and operation of DOS on a per-DOS
Session basis. Each DOS Session emulates an enti rely i ndependent i nstance of
DOS. DOS services are emu lated with i n the Enhanced DOS Session kernel , or
by i nvoki ng protect mode services provided by the OS/2 kernel . For example,
most DOS fi l e 110 functions are provided by the OS/2 fi l e system .

Virtual Device Driver (VDD): A VDD emulates an aspect of system function, typical ly
1/0. A VDD manages the way in which m ulti p le DOS Sessions access hardware 110
services. VDDs obta in and release system resources v ia the Vi rtal Device Hel per
(DevHi p) services provided by the Enhanced DOS Session kernel . A VDD can
di rectly access an 110 control device, or may perform 110 through a physical device
driver usi ng a d i rect cal l i nterface. A VDD can also s imu late hardware i nterrupts
i nto one or many DOS Session processes. Fi nal ly, a VDD can provide the logic to
emulate B IOS and other software i nterrupt functions.

With F igure 6-1 on page 6-3 as a poi nt of reference, the fol lowi ng d iscussion
h igh l ights the advantages of Enhanced DOS Session and how OS/2 2.0 provides an
i mproved DOS compati b i l ity envi ronment.

6-2 Application Design Guide

L ..4
I DOS Application !

/ /
Enhanced DOS I �u�

� - - - -1; OS/2 Kernel
Session Kernel lnstallable - - - �

I Dos Emulation ! ·�=t- File System ,., :;."' • ' Trap

jao86 Emulation ! Management
Memory

I Enhanced DOS J Management -
Session Manager

•

I Virtual Device I Hardware Interrupt -
Manager Helpers

/ 4:
Device Drivers ;����

5'fi

Virtual Programmable
X

Interrupt Controller 1
�

I Virtual Device Drive'rs Physical Device Drivers I
/ y y

Hardware

Figure 6-1 . Enhanced DOS Session System Structure and Control Flow

Fast Mode Switching

I
[I ·::".
'

A
,

As mentioned prev iously, Version 1 .X of the operating system is based on the 80286

processor. This processor can switch from real mode to p rotect mode, although this

takes many CPU cycl es. However, i t has no provision for switch ing d i rectly back to

real mode. Switchi ng back to real m ode requ ires reinit ial izing the processor-in

effect sett ing it to an i nit ial power-on state. This m ust be done whi le preserving a l l

the system control i nformation, a l l p rocess contexts, and system resource states.

Thus, switching frequently between real m ode, (where a DOS program is executing)

and protect mode (where several OS/2 programs m ay be runn ing), generates a

s ignif icant l evel of system overhead .

Mode switchi ng overhead is reduced on the 80386, where a s ingle i nstruction
switches the system qu ickly from real mode to protect m ode and back again .
Although this saves time , mode switch ing sti l l requi res significant overhead and is
avoided whenever possib le . For example, nearly a l l OS/2 1 .X device driver code is
bi-modal . That is , the device d river i s written so that i t can be entered i n either

Chapter 6. Multiple Virtual DOS Sessions 6-3

protect mode or real mode. An OS/2 bi-modal device driver w i l l force a mode
switch only when it is absolutely necessary, such as when it is runn ing in real mode, �
but it m ust move data to a protect mode OS/2 appl ication's vi rtual address space.
When a DOS appl i cation is runn ing whi l e OS/2 appl ications run in the background,
mode switching occurs. The overhead of mode switchi ng can degrade system
performance in these scenarios.

OS/2 2.0 DOS Sessions, on the other hand, are based on the Vi rtual 8086 mode of
the 80386 and 80486 processors. The Vi rtual 8086 mode is a superset of protect
mode, which is enabled by sett ing the VM bit i n the EFLAGS register of the 80386.
The CPU provides hardware support to switch automatical ly i nto V86 mode on a task
switch when the new task sets the VM bit in the EFLAGS register. Because of this
and other hardware support mechanisms, most of the operat ing system overhead
associated with mode switchi ng has been el i m i nated. When switchi ng between V86
mode (DOS appl ication) and protect mode (OS/2 appl ication or system code) , the
80386 hardware automatical ly activates the appropriate protection mechanisms.

Real mode execution has been total ly el i m i nated in OS/2 2.0. This makes i t possib le
to remove a l l real mode-specific code from device drivers and kernel modu les,
which were bi-modal in previous versions of the operati ng system. With OS/2 2.0,
device drivers are written as purely protect mode executables. This si m pl ifies the
logic and reduces the size of the affected modu les.

The OS/2 operati ng system provides each protect mode process with i ts own
i ndependent address space for code and data objects. This protects the code and
data objects from other appl ications. It also he lps prevent errant applications from
caus ing a system crash, s i nce system-owned resources are accessib le only by
system code. This h igh l evel of protect ion, a major feature of the OS/2 operati ng
system not found i n DOS, improves the i ntegrity and rel iab i l i ty of the system .

Under Version 1 .X of the operat ing system , when the OS/2 operati ng system
switches i nto real mode, a DOS appl ication can d i rectly access any object i n
memory between 0 and 1 MB, i ncludi ng portions of the OS/2 kernel and device
drivers. A DOS program that i nadvertently accesses any of the system's code or
data objects can disrupt the system . In addit ion, a DOS program can di rectly access
any 1/0 device hardware and cause the device to enter an unknown state. This can
render the device useless in the OS/2 protect mode envi ronment, and cause the
OS/2 device driver to fai l . These problems might eventual ly lead to a system crash
and the loss of user data, which often accompanies such events.

By runn ing DOS appl ications as V86 mode tasks, OS/2 2.0 maintai ns a fu l ly
protected system envi ronment. Each DOS program runs i n i ts own l i near 1 MB
memory space. This space is separately a l located from system memory with fu l l
protect ion g uaranteed b y the 80386. A DOS program cannot corrupt any system
code, data object, or another app l ication's code or data. If the V86 task causes a
trap or exception , it wi l l be fully managed by the operati ng system to maintai n
i ntegrity. An unpredictable DOS program can be term inated cleanly by the system
in m uch the same manner as an unpredictable OS/2 appl ication.

The system selectively isolates the DOS appl ications from 1/0 devices that are
managed excl usively by OS/2 device drivers. These devices are then emulated , or
v irtual ized, for one or more DOS appl ications. New to OS/2 2.0, the vi rtual device
driver (VDD) provides each DOS appl ication with a vi rtual i nstance of the real �
hardware, which is contro l led by a physical device driver (POD) . If necessary for
performance or other reasons, a VDD-PDD pai r can cooperate to give the DOS
program d i rect access to a part icular 1/0 port or range of ports. By control l i ng

6-4 Appl ication Design Guide

hardware access in this way, DOS applications cannot corrupt devices that are
perform ing 1/0 functions for an OS/2 process.

Multiple DOS Sessions

DOS SeHings

In OS/2 2.0, Enhanced DOS Sessions makes it poss ib le to start many concurrent
DOS sessions, each operati ng in i ts own i ndependent 1 MB l i near address space.
The num ber of sessions is only l i m ited by the amount of memory and swap space.
This bri ngs true m ult iprogramm i ng to the OS/2 DOS compatib i l ity envi ronment. The
user can run m ultip le DOS programs in m uch the same way as runn ing mu lt ip le
OS/2 appl ications. DOS and OS/2 app l ications are started i n the same ways, for
example, from a command prompt, or from the Desktop.

I n order to provide the h ighest possib le level of compat ib i l i ty with DOS app l ications,
Enhanced DOS Sessions provide the user with the abi l i ty to customize the operation
of the DOS envi ronment through DOS Setti ngs. DOS Setti ngs al low the user to
control particular DOS properties or attri butes that affect the behavior of DOS
appl ications runn i ng i n a DOS Session. DOS appl ications typical ly are not careful
about consum i ng system resources, such as memory and processor time. I n order
to preserve the i ntegrity . and performance of the system as a whole , Enhanced DOS
Sessions provide a f lexible envi ronment for these app l ications by a l lowing the user
to configure a DOS Session for DOS app l ications that m ight otherwise not work well
(or not work at a l l) with the default setti ngs ofthe DOS Session task.

Enhanced DOS Sessions provide a mechanism which supports standard setti ngs,
and a l lows vi rtual device drivers to register custom setti ngs. The CONFIG.SYS f i le
contains a number of standard DOS Setti ngs. These are appl i ed to a l l DOS
Sessions as they are created; however, these setti ngs can be changed for i ndiv idual
sessions.

DOS Settings can be set by the user when adding an app l ication to a group on the
desktop, or in certain cases, during execution whi le an appl ication is runni ng with i n
the DOS Session. I n the case where a DOS Session is created by another process
using a DosStartSession function cal l , a buffer can be provided contain ing the
requ i red DOS Setti ngs and thei r val ues.

The standard DOS setti ngs that affect the operation of vi rtual device drivers suppl i ed
with OS/2 2.0 can be categorized as fol lows:

Video Control functioning of screen 110 operations with i n a
DOS Session.

Hardware Environment

DOS Environment

Memory Extenders

File Operations

Windowing

Affect the v i rtual hardware envi ronment provided by the
DOS Session.

Affect the behavior of the DOS emulation env i ronment
with i n a DOS Session.

Affect the behavior of the EMS, XMS, and DPM I memory
extenders, if used i n the DOS Session.

Affect the behavior of f i le 1/0 operations with a DOS
Session.

Affect the screen .1/0 behavior of DOS Sessions when
running in windowed mode on the Desktop.

Chapter 6. Multiple Virtual DOS Sessions 6-5

Transfer of Data Between DOS Sessions
To al low easy m ig ration of data from DOS appl ications to PM appl ications, OS/2 2.0
al lows DOS programs to run with i n windows in the desktop envi ronment. This
al lows users to display a graph or chart from a DOS appl ication beside a document
they are prepari ng with an OS/2 word processor. A block of text can be selected i n
one wi ndow (a popu lar DOS word processor, for example) and copied to the
C l i pboard usi ng a mouse or keyboard . That text can be pasted i nto another wi ndow
(perhaps a PM spreadsheet appl ication) . G raphic images can also be transferred
from a DOS appl ication to the C l i pboard.

Increased Avai lable Memory
The smal l memory space avai lab i l i ty i n Version 1 .X of the OS/2 prevents some DOS
appl ications from load ing . Si nce the operating system i nstal ls some of i ts kernel ,
device d river code, and data i n fixed memory below 1 MB (so system functions can
execute in real mode), DOS appl ications have less space for thei r own code and
data.

Note: This problem is not unusual , even in a native DOS envi ronment, s i nce
i nstal l i ng memory-resident DOS programs and device d rivers have the same effect.

I n OS/2 2.0, the avai lable base memory (below 640KB) i n each DOS Session is over
620KB, before load ing any user-i nsta l led DOS device drivers or
Term i nate-and-Stay-Resident (TSR) programs. This i ncreases the avai lable base
memory in OS/2 2.0 by nearly 80KB over Version 1 .3. Si nce the avai lable base
memory is g reater than in DOS itself, OS/2 users are now able to load some DOS
TSR programs with larger DOS appl ications, which would not fit together in the
smal ler base memory avai l able in DOS.

Adding LAN drivers to the OS/2 conf iguration to support the network server or
redi rector functions does not take up DOS appl ication space. Any user-i nstal led
OS/2 device drivers w i l l not affect the amount of appl ication space avai lable to a
DOS appl ication runn ing under Enhanced DOS Sessions.

Memory Extender Support
Many popular DOS appl ications are now usi ng the Expanded Memory Specification
(EMS) or the Extended Memory Specification (XMS) to access memory in protect �

mode on the 80286 or 80386 processors. This enables DOS appl ications to access
memory above the 1 MB real mode addressi ng l i m it, to have total code and data
space larger than the avai lable base memory, and to have very large code or data
objects loaded i nto memory for enhanced execution speed. The standard
configuration of OS/2 2.0 Enhanced DOS Sessions supports both the EMS and XMS
functions.

Expanded Memory Specification
OS/2 2.0 EMS support is based on Lotus**- lntei-Microsoft (L IM) EMS Version 4.0.
Under DOS, special hardware is normal ly requ i red to support EMS, although a
number of software-based EMS emulation packages exist. Enhanced DOS Sessions
support EMS by mapping memory al location requests i nto the l i near process
address space usi ng normal system memory. No special hardware or software is
requi red. The underlying OS/2 vi rtual memory management functions provide the
expanded memory. Therefore, use of EMS i n one DOS Session does not affect the
abi l i ty of DOS appl ications i n another DOS Session to perform si m i lar EMS
functions.

6-6 Appl ication Design Guide

The OS/2 2.0 L IM EMS emulation:

• I m plements a l l the requ i red functions in the LIM EMS Version 4.0.

• Provides each DOS Session with a separate EMS emulation. Each DOS Session
has its own set of expanded objects so that features work as they would if each
DOS Session was runn ing on a different real 80386. Each DOS Session cannot
affect the avai labi l ity of objects i n other DOS Sessions or access memory i n
other DOS Sessions.

• Provides for remapping of conventional memory (below 640KB) for use by
appl ications.

• Provides configurable l i m its for how m uch EMS memory is avai lable across DOS
Sessions, as wel l as a l i m it per DOS Session. The DOS Setti ngs feature a l lows
the user to override the per DOS Session l im it, subject to the constraint g iven by
the overal l l i m it.

• Supports m ulti p le physical-to-s ing le logical mappi ngs. Different 8086 addresses
can map to the same expanded memory object address. This is requi red by
some programs.

• EMS can be removed and the operati ng system can run without load ing EMS i n
any DOS Session.

OS/2 2.0 EMS al lows DOS appl ications to a l locate and access up to 32M B of
expanded memory i n up to 255 EMS objects. These objects can be mapped i nto the
base memory space (below 1 MB) so the DOS appl ication may access very large
address spaces. Appl ications access EMS services usi ng the DOS i nterrupt INT 67h .

EMS services are i m plemented under Enhanced DOS Sessions using a vi rtual
device d river known as the Vi rtual Expanded Memory Manager (VEMM) . OS/2 2.0
EMS offers a separate EMS emulation to each DOS Session, by placi ng most VEM M
control structures i n a per-DOS Session data area outside the V86 mode address
space. Un l i ke most vi rtual device drivers, VEM M does not have a correspond ing
physical device d river. I nstead, VEM M manages its memory usi ng OS/2 2.0 kernel 's
memory management services. EMS object al location, real location, or deal location
is accompl ished by request ing correspond ing services from the operat ing system's
memory manager. For example, when an appl ication requests the al location of an
expanded memory object, VEM M requests the al location of a memory object in
l i near memory outside any DOS Session.

VEM M is typical ly i nsta l led at system i n it ial ization t ime, v ia a DEVICE = statement
i n CONFIG .SYS, as shown below:

Figure 6-2. Loading VEMM

To prevent DOS Sessions from usi ng a l l avai lable memory, there is an overal l l i m it
on the amount of EMS memory, and a default l i mi t for each DOS Session to prevent
a DOS Session from requesti ng all avai lable EMS memory. The defaults for these
l i m its are specified in the DEVICE = statement for VEM M . The default l i m it for each
DOS Session can be overridden usi ng the DOS Setti ngs feature.

Sett ing the overal l l i m i t to zero d isables EMS in all DOS Sessions, regardless of the
per-DOS Session val ue. Setti ng the per-DOS Session val ue to zero d isables EMS i n
a l l DOS Sessions un less thei r entries o n the desktop specify a nonzero E M S size.

Chapter 6. Multiple Virtual DOS Sessions 6·7

Sett ing the EMS size to zero for an entry on the desktop d isables EMS for that DOS
Session. Most users need never change the default val ue. DOS Settings for frame ·�

posit ion, and the s ize of extra mapping regions above and below 640KB can be
conf igured by the user;

Most VEM M setup is postponed unti l the fi rst INT 67H service request is made. Only
remappable conventional memory is set up before that ti me. This assures that
other vi rtual device drivers have a chance to reserve read-only memory (ROM) and
device memory areas.

Extended Memory Specification
XMS functions provide another mechanism for DOS appl ications to access memory
above the 1 MB l i m it. OS/2 2.0 Enhanced DOS Session provides support for L IMA
Extended M emory Specification Version 2.0, in a s im i lar manner to that provided for
LIM EMS Version 4.0, usi ng normal system memory and emulat ing XMS functions.

The extended memory specification manages three different kinds of memory, as
shown i n F igure 6-3:

• High Memory Area (HMA)

• Upper Memory B locks (UMBs) i n the Upper Memory Area (UMA)

• Extended Memory B locks (EMBs)

F/ _________ ---r4 Top of Memory ::::::::

�-=:::�::=:==�::==�::I =�-;
Extended Memory Block ij,

-- ----------- :=ij:.

�

tc-/------------tl�:· Memory above 1 MB+64KB
is available for use
as extended memory block

--- 1 MB+64KB
High Memory Area

ROM

Video RAM buffer

Upper Memory Block

ConventionaJ
memory

1 MB �------------------,
/

Upper Memory Blocks
might exist anywhere
between 640KB and 1 MB

640KB

OKB

Figure 6-3. Memory Map of Areas Supported by Extended Memory

6-8 Application Design Guide

The OS/2 L IMA XMS emulation:

• Implements a l l L IMA XMS Version 2.0 functions.

• Provides each DOS Session with a separate XMS emulation. Each DOS Session
has its own high memory area, upper memory blocks and extended memory
blocks; hence programs work as they would if each DOS Session was runn ing on
a d ifferent real 80386. A DOS Session therefore cannot affect the avai labi l ity of
extended memory objects i n other DOS Sessions or access memory owned by
other DOS Sessions.

• Provides configurable l i m its for how m uch XMS memory is avai lable across a l l
DOS Sessions as well as a l im it per-DOS Session. The DOS Setti ngs feature can
override the per-DOS Session l i m it , subject to the constraint given by the overal l
l i m it, and can d isable XMS altogether for a part icular DOS Session if its
i nsta l lation confl icts with the program being run in the DOS Session.

• XMS can be removed and the operat ing system can run without load ing XMS i n
any DOS Session.

Appl ications which use extended memory can use the XMS support in the same
manner as in a native DOS envi ronment. In addit ion, portions of the DOS operati ng
system, device drivers and TSR programs can be loaded i nto extended memory,
thereby conserving memory with i n the DOS appl ication address space for
appl ication use.

Note that older appl ications which access extended memory d i rectly, rather than
through an extended memory manager, m ight not be compatib le with the XMS
support under Enhanced DOS Sessions.

XMS services are implemented under Enhanced DOS Session usi ng a v irtual device
driver known as the Vi rtual Extended Memory Manager (VXMS) . VXMS provides a
separate XMS emulation for each DOS Session by p lacing most VXMS control
structures in a per-DOS Session data area outside the V86 mode address space.

Li ke VEM M , and unl i ke most other vi rtual device drivers, VXMS does not have a
correspond ing physical device driver. I nstead, VXMS depends on the OS/2 memory
manager. XMS object a l location, rea l location and deal location are accompl ished by
request ing correspond ing services from the operat ing system's memory manager.
For example, when an appl ication requests the a l location of a block of extended
memory, VXMS requests the memory manager to al locate a memory object in l i near
memory outside the V86 mode address space. Real location and deal location are
handled si m i larly.

VXMS is loaded at system i n it ial ization ti me usi ng a DEVICE = statement i n
CONFIG.SYS, as shown below:

Figure 6-4. Loading VXMS

This statement should be placed i n CONFIG.SYS after the DEVICE = statement for
VEM M.SYS, si nce VXMS queries VEM M to ensure that no confl i cts occur in memory
a l location.

The DEVICE = statement uses parameters to specify the total amount of avai lable
XMS memory, and the default l i m it for each DOS Session. I n the above example,
the overal l l i m it is set to 8MB and the l i m i t for each DOS Session is set to 2MB.

Chapter 6 . MuHiple VIrtual DOS Sessions 6-9

The overa l l l i m it com prises the only rel at ionshi p between XMS memory objects i n
d ifferent DOS Sessions, and i s i mposed t o prevent XMS from acqu i r ing a l l avai l ab le �.
memory. The default overa l l l im it is 1 6MB , and the default l im it for each DOS
Session is 2MB. The default l im i t for each DOS Session can be overridden by
i nstal l i ng an appl i cati on on the desktop and choosing to specify the XMS size with
the DOS Settings feature.

Sett ing the overa l l l i m it to zero d isables XMS in all DOS Sessions regardless of the
per-DOS Session value. Sett ing the default l i m it for a part icular DOS Session to
zero d isables XMS i n all DOS Sessions un less thei r start l i st entries specify a
non-zero XMS size. Sett ing the XMS size to zero for an entry i n the start l i st
disables XMS for that appl i cation's DOS Session only. Most users need never
change the default values.

In addit ion to memory sizes, the number of handl es are configurable parameters
which may be altered on a per-DOS Session basis using the DOS Settings feature.

XMS supports use of the H IMEM area-a 64KB area j ust above 1 M B-which can be �

used for code or data objects by a DOS appl i cation. Other XMS functions al low
moving code and data objects i nto extended memory, and from extended memory to
base memory. Using these functions, an appl i cation can p rovide several overlays,
where one overlay at a t ime is accessib le to the appl i cation.

Under Enhanced DOS Sessions, EMS and XMS memory a l locations are managed as
OS/2 pageable vi rtual m emory, not as fixed physical memory. Therefore, the total
memory al located can exceed the amount of system random-access memory (RAM) .

DOS Protect Mode Interface
Protected mode specifications are such that commun ication between protect mode
and real mode is diff icult. A DOS TSR, for example, with which an appl ication
commun icates through a software i nterrupt or a shared buffer, wi l l not work in
protect mode. The real mode address of the TSR , if used by the protect mode
appl i cation , wi l l not poi nt to the same memory space as d id the same address i n
real mode because the segment portion of the address is i nterpreted differently i n
the two modes.

DOS Protect Mode I nterface (DPMI) p rovides an i nterface between protect mode and
real mode programs. DPMI consists of a set of p rotect mode functions that, among
other th ings, a l locate real mode memory, s imu late real m ode i nterrupts and
functions cal ls, and i ntercept real mode i nterrupt vectors. DPMI b reaks the 640KB
memory barrier i nherent i n DOS appl ication by enabl i ng DOS appl ications d i rect
access to 32-bit memory segments. OS/2 2.0 Enhanced DOS Sessions provides
support for the DPMI Specification Version 0.9, as defined by the DPMI committee.

By usi ng DPMI functions, an appl icati on running in protect mode can comm unicate
with the TSR i n real mode. The main function that DPMI del ivers, however, is that i t
al lows DOS extenders to work properly i n a mu ltitasking, protect mode envi ronment.

DOS extenders enable DOS appl ications to access extended memory whi le runn ing
i n protect mode. As requ i red, these extenders switch to:

• protect mode for appl ication code
• real mode for DOS and other real mode cal ls

DOS extenders under DOS can switch modes on thei r own. They cannot, however,
do so when the appl ication usi ng the DOS extender is runn ing in a v i rtual machi ne.
The DPMI services provide the same services that DOS extenders use i nternal ly to

6-1 0 Application Design Guide

run thei r app l ications. The DOS extender makes INT 31 h DPMI cal ls i nstead of
performi ng mode switch ing and selector translation itself.

The term real mode software i s used to refer to code that runs in the low 1 MB
address space and uses segment:offset addressing . Under many i m plementations
of DPMI , real mode software is actual ly executed in v i rtual 8086 mode. Since vi rtual
8086 mode closely approximates real mode, V86 mode and real mode are
i nterchangeable in the DPMI context.

The DOS Protect Mode I nterface faci l itates the fol lowi ng:

• Al lows DOS appl ications to run in protect mode

• Provides DOS appl i cations with access to a large memory address space

• Provides DOS appl ications with mode switching and cal ls between V86 (" real "
mode) and protect mode

• Provides DOS appl i cations with access to hardware, such as debug registers, i n
a way that is safe for the host operat ing system

The DPMI is defi ned to a l low DOS programs to access extended memory whi l e
mai ntain ing system protection. D P M I defi nes a specific subset of DOS and B IOS
cal ls that can be made by protect mode DOS programs. It also defi nes an i nterface
via software i nterrupt 31 h that protect mode programs can use to a l locate memory,
modify descriptors and cal l real mode software. Any operating system that
currently supports vi rtual DOS sessions should be capable of supporti ng DPMI
without affecti ng system security.

Some DPMI i m plementations can execute mult ip le protect mode programs i n
i ndependent vi rtual machines. I n such implementations, DPMI appl ications can
behave exactly l i ke any other standard DOS program . They can, for example, run i n
the background or i n a window (if the envi ronment supports these features) .
Programs that run i n protect mode gain a l l the benefits of v i rtual memory and can
run in 32-bit f lat model , if desi red. OS/2 2.0 provides a DPMI i m plementation of this
nature.

DPMI services are only avai l ab le to protect mode programs. Programs runn ing real
mode can not use these services. Protect mode programs m ust use a DPMI service
to enter protect mode before cal l i ng INT 31 h services.

Some i m plementations of DPMI , i ncl uding OS/2, can run 32-bit 80386 specific
programs. The h igh word of the 32-bit registers is i gnored when runn ing 1 6-bit
protect mode programs.

DPMI services are provided by what is referred to as the DPMI host program. The
programs that use DPMI services are cal led DPMI clients. General ly, DPMI cl ients
fal l i nto two categories:

1 . Extended Appl ications

2 . Appl ications that use DPMI d i rectly

Most DPMI appl ications are l i kely to be extended appl ications. These appl ications
are bound with a DOS extender that is the actual DPMI c l ient. The appl ication cal ls
the DOS extender services. These services are then translated by the cl ient (the
DOS extender program) i nto DPMI cal ls. The advantage of an extended appl ication
over one that cal ls DPMI services di rectly is that general ly an extender wi l l support
more than j ust DPMI .

Chapter 6 . Multiple Virtual DOS Sessions 6·1 1

A DOS extender can provide a s ing le set of APis to an app l ication and then translate �
these APis to the services (DPMI , EMS, and XMS, for example) that are provided.
Where the host extension services are lacking in a part icular function the extender
m ust provide that function for the appl ication.

The appl ication code sits on top of a set of base extender functions and APis. The
extender then has separate modules for each type of extension service and code to
fi l l i n where services are lacki ng. An example of a typical extender service is
protect mode program load ing . The app l ication code that is actual ly shipped
consists of the appl ication code together with the DOS extender code and a l l of i ts
sty les of c l ient support. The host support is general ly an extension of the base
operati ng system functions or a device d river used to extend the base operati ng
system functions.

Many programs that use DPMI wi l l be bound to DOS extenders so that they wi l l be
able to run under any DOS envi ronment. Existi ng DOS extenders support APis that
d iffer from the I NT 31 h i nterface. Usual ly, DOS extenders use an INT 21 h m ulti p lex .�

for thei r extended APis.

Extenders that support DPMI wi l l need to i n it ial ize differently when they are run
under DPMI envi ronments. They wi l l need to enter protect mode usi ng the DPMI
real to protect mode entry poi nt, i nsta l l thei r own API handlers, and then load the
DOS extended appl ication program.

DOS extenders should check for the presence of DPMI before attempti ng to al locate
memory or enter protect mode using any other API . When DPMI services are
detected , extenders that provide i nterfaces that extend or are d ifferent from the
basic DPMI i nterface w i l l switch i nto protect mode and i n itia l ize any i nternal data
structures. DPMI-compatib le extenders that provide no API extensions should
si m ply execute the protect mode appl ication i n real mode.

The DPMI implementation in OS/2 2.0 has the fol lowi ng characteristics:

1 . DPMI 0.9 is fu l ly supported.

2. DPMI API (INT 31 h) support resides outside the kernel and is provided by a
vi rtual device driver (VDPMI .SYS) .

3. Both kernel support and the DPMI API l ayer are i ndependently expandable to
future versions of DPMI .

From the appl ication's point of v iew, i t makes n o d ifference whether the actual mode
is real mode or V86 mode.

DPMI is service-request driven. An appl ication makes an INT 31 h service request.
The DPMI VDD handl es the request, cal l i ng the kernel for basic services, such as
al locat ing memory.

DPMI services are i m plemented under Enhanced DOS Sessions usi ng the vi rtual
device d river VDPMI .SYS. DPMI is loaded at system i n it ial ization ti me using a
DEVICE = statement i n CONFIG .SYS, as shown below:

Figure 6-5. Loading DPMI

6-1 2 Application Design G uide

Windows 3.o·· is not a standard DPMI cl ient and cannot run under DPMI i n a DOS
Session. Another virtual device driver (VDD), VDPX.SYS, translates system
requests (such as INT 21 h and BIOS cal ls) from protect mode to real mode. This
VDD wi l l translate the request from a protect mode selector: offset to a real mode
address below 1 M (segment:offset) . Appl ications can either use this VDD, or
provide thei r own translation services.

Even with DPMI , Windows 3.0 cannot run in Windows Enhanced or Standard Mode
under OS/2 2.0. The reason for this is that when Windows runs in Enhanced or ·
Standard Mode it operates at ring 0. Enhanced Mode al lows Windows to provide
DPMI , v i rtual memory, hardware virtual ization, and multiple DOS boxes for
non-Windows appl ications. Under OS/2 2.0, Enhanced DOS Session performs these
functions. When users wish to run Windows appHcations, they s imply start a new
DOS Session. (However, the appl ication wil l run i n. standard mode.,)

Inside Enhanced DOS Session

The I ntel** 80386 Programmer's Reference (1986) describes the system software that
supervises Virtual 8086 machines as the V86 Monitor. To provide support for
multiple Enhanced DOS Sessions, in OS/2 2.0 and to do this in such a way that
would exploit the existing services of the OS/2 kernel (task schedul i ng, memory
management, i nterprocess communication, and so on), it was necessary to extend
the OS/2 kernel itself. The Enhanced DOS Session kernel (Figure 6-1 on page 6-3)
is comprised of three new modules, developed using 32-blt code and the OS/2 2.0
f lat memory model . These modules-DOS Emulation, 8086 Emulation, and the DOS
Session Manager-provide a ful l set of control program i nterfaces known as Vi rtual
Device Helper services, which are i nvoked by v irtual device driver (VDD) modules.
VDDs provide device-specific support, such as hardware virtual ization, BIOS
emulation, and other low-level system functions.

The VDD model is of i nterest to developers whose DOS appl ications provide
hardware-specific functions on non-IBM option adapters. The following section
describes the VDD architecture and gives an overview of Enhanced DOS Session
operations with emphasis on the behavior of VDDs.

Virtual Device Helper Services
Several categories of virtual device helper services are avai l able to al l VDDs.
These services control access to system resources, such as memory, t imers, and
semaphores. DOS Session events, such as DOS Session foreground and
background state switchi ng , can be tracked using virtual device helper services. A
VDD can display error messages via the VDHPopUp service. Other vi rtual device
helper services al low a VDD to establish communications with another VDD or with
a physical device driver (POD). Typical ly, the VDD also must hook a set of system
traps that are generated when certain 8086 i nstructions are executed i n V86 mode�
To get contro l , a VDD usually hooks the fol lowing traps using the appropriate virtual
device helper services:

• Traps generated when a DOS appl ication performs di rect 110 to a port that is
being virtual ized (IN and OUT i nstructions)

• Traps generated when a BIOS or other software i nterrupt function is executed i n
a DOS Session (INT i nstructions)

• Traps generated when a DOS appl ication attempts to access memory that is
mapped to a physical device over which the VDD has control

Chapter 6. Multiple VIrtual DOS Sessions 6-13

Another i mportant category of vi rtual device helper services are those that support
the si mu lation of hardware i nterrupts. These services control the state of the vi rtual �
programmable i nterrupt control ler.

Al l the vi rtual device helper service use 32-bit code are cal lab le from assembler
language.

For more i nformation on VDH services, see the OS/2 2.0 Virtual Device Driver
Reference.

The Virtual Device Driver Model
Al l OS/2 1 .X device d rivers are bi-modal ; they are requ i red to run i n either real
mode or protect mode. This is true even if the device driver does not provide
exp l icit DOS mode support (such as hooking a DOS mode software i nterrupt) .
Because Enhanced DOS Sessions e l i m inate real mode execution, existi ng device
d rivers should be updated to remove the real mode sections. These drivers are
now referred to as Physical Device Drivers (PODs) . . �

Vi rtual device drivers (VDD) are new i n OS/2 2.0. VDDs are written as 32-bit, f lat
memory model , protect mode modules. Figure 6-6 shows the structure of vi rtual
device d rivers and the i nterfaces to a POD.

VIRTUAL PHYSICAL

/ /
/ /
Enhanced DOS. Session

•117 ROutine

- In itial ize • I OCTL

Event Handler
- Open • Read

- Close - Write

/ / 1--- / /
1/0 Trap Timer
Handler pptlonal Handler VDD VDD

/ Interface f---+ / Interface

Software Hardware
Interrupt Interrupt

Handler Handler

!I ll

Figure 6-6. Structure of Virtual and Physical Device Drivers

:

11

Al l VDDs are loaded and i n it ial ized dur ing the system i n itia l ization (boot) process.
Many of them establ ish commun ication at that t ime with the associated POD.
Tab le 6-1 on page 6-1 5 1 ists the VDDs provided i n OS/2 2.0 and i nd icates those that
have a d i rect i nterface with an OS/2 POD. The VDD controls access by any DOS
app l ication to the device, and rel i es on the POD to manage the physical hardware
operations.

6·1 4 Application Design Guide

Table 6-1 . OS/2 2.0 Virtual Device Drivers

VDD Interfaces wilh PDD

B I OS
CMOS/Real Ti me Clock
Programmable I nterrupt Contro l ler
T imer X
Keyboard X
Mouse X
Disk/Diskette X
DMA Contro l ler
Video (EGA, VGA, and 851 4/A)
Pri nter X
COM X
Expanded Memory Specification
Extended Memory Specif ication
Numeric Coprocessor (80387)
VCDROM
VDPM I
VDPX

For example, the Vi rtual COM Device Driver has a d i rect i nterface to the Physical
COM Device Driver. This i nterface a l lows the COM POD to service all the hardware
i nterrupts and to buffer data bei ng transmitted or received. The Vi rtual COM driver
emulates Asynchronous Communications B IOS functions (INT 1 4H) to send and
receive characters and to set or query the state of a COM port. The Vi rtual COM
driver also virtualizes the 1 /0 ports associated with a COM port; vi rtual ization
i m pl i es separate si mu lation of the physical hardware (in this case, 1/0 ports) for
each DOS Session. This a l lows the Physical COM driver to manage the actual COM
port hardware, while a DOS appl ication accesses only a vi rtual copy of the port.
With this design , an OS/2 appl ication can operate on one COM port whi le a DOS
app l ication accesses a second COM port. Both of these appl ications can perform
data communications in the background. The relationsh ip between the VDD and
POD is shown in F igure 6-7 on page 6-1 6 .

Chapter 6 . Multiple Virtual DOS Sessions 6-1 5

L
/ A I / A j DOS Application , OS/2 Applications , �i�

�>
Port 1/0 DosOpen/Ciose

BIOS Functions DosRead/Write

Hardware Interrupts DosDevloctl

Send/Receive Data
Set/Query Status

L ::..,; L .,
COM VDD Interrupt COM.PDD

(VCOM.SYS) (COM.SYS)

v

/ ... j Asynchronous Ports ,
Hardware

Figure 6-7. Physical and Virtual Device Drivers Under OS/2 2.0

'· :-. ..

Not every VDD needs to operate with a POD i n the same manner as i nd icated for
COM port vi rtual ization, as shown from the l ist in Table 6-1 on page 6-1 5. The
VDD-PDD i nterface is requi red when the device generates hardware i nterrupts that
must be s imulated i n the context of the DOS Session. For example, many DOS
appl ications that support asynchronous communications i nclude hardware i nterrupt
handler routines. These routines typical ly perform 110 di rectly to the COM port
hardware rather than going through BIOS.

To support these DOS appl ications and to al low them to run in the background and
foreground, the Vi rtual COM device driver simu lates hardware i nterrupts in the
task-t ime context of the V86 mode process. DOS Session are scheduled to run using
the same preemptive time-sl ic ing task-dispatching method that drives the
multitasking OS/2 sessions. Hardware i nterrupts, on the other hand, occur
asynchronously to this task-schedul i ng process. By simulating the hardware
i nterrupts and presenting a vi rtual hardware state, the i nterrupt hand l i ng logic of the
DOS appl ication does not execute on the physical i nterrupt thread. This means that
switching to V86 mode is not done at i nterrupt t ime, but deferred unti l the scheduler
dispatches the DOS Session task.

The advantage of simu lated i nterrupts is that mode switching and hardware
vi rtual ization do not need to be done at i nterrupt t ime. Also, the DOS appl ication
does not get control at i nterrupt t ime, which helps to maintai n system i ntegrity.

A potential d isadvantage of this approach is that DOS appl ications with routines that
are highly real-time dependent m ight not operate correctly under heavy system load
conditions. When developing a VDD, it is i mportantto consider the time-dependent
aspects of the DOS appl ication, and to design the hardware vi rtual ization to satisfy
this dependency. This can usual ly be ach ieved when al l hardware states can be
simu lated i n software, and where performance considerations remain high on the
VDD-PDD designer's agenda.

6-16 Application Design Guide

Communication with OS/2 Processes
Another feature of OS/2 2.0 a l lows protect mode OS/2 processes to request services
d i rectly from a VDD. New OS/2 functions, as shown i n Table 6-2, support this
capab i l i ty.

Table 6-2. VDD Services

Function Description

DosOpenVDD Open a Vi rtual Device Driver (get a handl e to a VDD)

DosRequestVDD Al lows a protect mode OS/2 appl ication to com m u n icate
with a vi rtual device d river

DosCioseVDD Close a Vi rtual Device Driver (free a handl e to a VDD)

The VDD designer can provide any appropriate services across this i nterface,
dependi ng on the hardware bei ng vi rtual ized. Potential uses of this i nterface
i ncl ude the abi l ity of OS/2 appl ications to communicate with DOS appl ications. To
achieve this, the VDD would also have to provide DOS appl icati ons with an i nterface
to establ ish the communications. This could be done, for example, by defi n ing a
series of software i nterrupt functions that a DOS appl ication could i nvoke.

Chapter 6. Mult iple Virtual DOS Sessions 6-1 7

Summary

OS/2 2.0 provides a redesigned DOS compatib i l i ty envi ronment known as Enhanced
DOS Sessions. Features of Enhanced DOS Sessions i ncl ude:

• The abi l ity to run DOS app l ications as V86 mode tasks. This el i m inates the
operat ing system overhead of switchi ng between real mode and protect mode,
and provides a fully protected system envi ronment.

• The abi l ity to start many concurrent DOS sessions, each operat ing in its own
i ndependent 1 MB l i near address space.

• The abi l ity to customize the operation of DOS Sessions through DOS Settings.

• The abi l ity to run DOS programs in windows in the PM envi ronment.

• I ncreased avai l ab le base memory over previous versions of the operat ing
system .

• Support for Expanded Memory Specification (EMS) and Extended Memory
Specification (XMS). This al lows DOS appl ications to access memory above the
1 MB real mode addressing l i m it, to have total code and data space l arger than
the avai lable base memory, and to have very l arge code or data objects loaded
i nto memory for enhanced execution speed.

The Enhanced DOS Session is composed of three modules-DOS Emulation, 8086
Emulation, DOS Session Manager-which provide a fu l l set of control program
i nterfaces known as Vi rtual Device Helper services. These services are i nvoked by
Vi rtual Device Driver (VDD) modules. VDD modules provide hardware-specific
support, such as hardware vi rtual ization, B IOS emulat ion, and other low-level
system functions.

6-1 8 Appl ication Design Guide

Chapter 7. Object-Oriented Programming Using SOM

This chapter describes the IBM System Object Model (SOM) for object-oriented
programm i ng . It assumes a knowledge of object-oriented programming and design
concepts.

Object-Oriented Programming

Object-oriented programm i ng is a programming paradigm based on objects, which
are programm i ng constructs designed to ref lect items in the real world . An object
consists of both the data necessary to describe a real-world item, and the functions
necessary to describe the behavior of the item. This is in contrast to the structured
programming model , which focuses on the things that can be done to the data (the
functions), and which treats the data only as something to be acted on. Objects bind
together the data that describes an item and the functions that act on the data.

The basic unit of organization i n object-oriented programming is the object, which is
a data structure that consists of data and functions. The data is cal led the object's
state. The functions that def ine the object's behavior are called methods. Objects
are i nstances, or i nstantiations, of a c lass. A class is a description of an object. It
defines the data that represents the object's state, and the methods that the object
supports.

Object-Oriented Programming Example

© Copyright IBM Corp. 1992

An example might make object-oriented programm i ng concepts clearer. A stack is
a common programming construct, permitting data to be stored and retrieved in a
Last- In, Fi rst-Out manner-that is, the l ast data element p laced on the stack is the
fi rst element that is retrieved from the stack.

The data structure for the stack describes the stack-a place to store the data put on
the stack and a variable to keep track of the l ocation of the top of the stack. G iven
the definit ion of the data structure, mu lt ip le i nstances of the stack can be declared
with in a program .

There are two basic operations that can b e performed on a stack, pushing data onto
the stack and popping data off of the stack. It would also be beneficial to be able to
dynamical ly create a stack. Functions to perform these activities must be defined.

F igure 7-1 on page 7-2 show the definit ion of a stack data structure and functions,
and the implementation for one of the functions. For clarity, the C programming
language is used i n this example.

7-1

Figure 7-1 . Generic Stack Functions in C

A cl i ent program m ight use th is stack to create a stack of words need ing
i nterpretation, as i n F igure 7-2.

Figure 7-2. Using Generic Stack Functions in C

7-2 Appl ication Design Guide

The stack is an example of a class. The stack contains two data elements
(stackArray and stackTop), and supports three methods: Create, Push, and Pop.
WordStack is an object of class Stack; i t can also be cal l ed an i nstance of a stack.

Methods m ust know the specific object on which they are to operate. This object is
cal l ed the target object, or sometimes the receiving object. Notice that each method
(except Create) takes as its fi rst parameter a pointer to the target object. This is
because a program might have many objects of a g iven class, and each are
potential targets for the class methods.

IBM System Object Model

SOM Features

OS/2 2.0 i ncludes a l anguage-neutral object-oriented programm i ng mechanism
cal l ed the System Object Model (SOM). SOM is specifical ly designed to support the
new, object-oriented paradigm, and to be usable with both procedural
(non-object-oriented) l anguages and object-oriented languages. (This release of
SOM only supports the C language.) SOM is not a l anguage-it is a system for
defin ing, manipu lat ing, and releasi ng class l i braries. SOM is used to defi ne classes
and methods, whi le a l lowing the developer to choose a l anguage for i m plementing
these methods. Most programmers wi l l therefore be able to use SOM quickly
without having to l earn a new l anguage syntax. SOM consists of a run-t ime l i brary
and a set of uti l i ty programs that support bu i ld ing , external izi ng, and mani pulat ing
software objects.

SOM objects are l anguage-neutra l . They can be defined i n one programm i ng
l anguage and used by app l ications or objects written i n another programm i ng
l anguage.

SOM offers three i mportant object-or iented programm i ng features: encapsul at ion,
i nheritance, and polymorphism.

Encapsulation
An object consists of data and actions (methods) that can be performed on that data.
An object has an external (public) view that prescribes how other objects or
appl ications can i nteract with it. An object also has an i nternal (private) view that
prescribes how data and methods are actual ly i m plemented. Object i m plementation
is h idden (encapsulated) from the publ i c v iew.

Developers of SOM objects can external ize as much of an object's definit ion as they

choose. The developers should , however, careful ly consider what they choose to

external ize. Publ ished m ethods and i nstance variables become a permanent part of

an object's i nterface. Unnecessary external ization of an object's definit ion m ight

compromise future compati b i l i ty.

SOM allows changes to an object's i nternal i m plementation without affect ing the
compatib i l i ty of result i ng bi naries. This means that appl ications using SOM objects
wi l l not requ i re recompi l at ion when the SOM object defin it ions change. Ful l
forward, binary compatib i l i ty can be retained when:

• Addi ng new methods

• Adding, changing, or deleting unpubl ished i nstance variables, provided that old
methods can sti l l be supported

Chapter 7. Object-Oriented Programming Using SOM 7-3

• I nserti ng new classes above your class i n the i nheritance h ierarchy

• Relocat ing methods upward in the class h ierarchy

Inheritance
Inheritance is the derivation of new chi ld classes from existi ng parent classes.
Ch i ld classes i nherit the characterist ics of thei r parent classes. This means that
methods defi ned for a parent class are automatical ly defi ned for the ch i ld class.
Ch i ld classes also can add un ique characteristics to thei r parent classes, i n addit ion
to those they have i nherited. This means that chi l d classes can defi ne new behavior
i n terms of new methods. These chi ld classes are also known as subclasses.

Polymorphism
Polymorphism is, basical ly, many i m plementations of the same method for two or
more classes of objects. This is known in SOM as method overrides, or override
resol ut ion. SOM supports various types of polymorphism, so it can be readi ly
mapped i nto different object-or iented languages. The fol lowing example descri bes
one type of polymorphism: polymorphism by i nheritance. �

As ch i ld classes are derived from parent classes, i nherited methods can be
overridden. For example, suppose that C lassB is a chi ld of C lassA, as i l l ustrated i n
F igure 7-3.

Definition of ClassA Definition of ClassB

MethodA: MethodA:
Print Something. Print Something Else .

Figure 7-3. Polymorphism by Inheritance

MethodA is one of the methods defi ned for C lassA. It also is one of the methods
defi ned for ClassB, and is i nherited from ClassA. In SOM , MethodA can be
overridden in the definit ion of ClassB to do d ifferent thi ngs for C lassB . M ethodA,
therefore, is defi ned for both ClassA and ClassB, but is i m plemented d ifferently for
ClassA and ClassB. This means that method resol ution requ i res the name of the
method as wel l as the object bei ng acted upon. .�

The SOM Run-Time Environment
The SOM run-t ime envi ronment contai ns the basic data structures and functions that
are used to defi ne, create, and manage classes and objects i n terms of other
classes.

Classes are generic defi n itions of sets of objects and thei r behavior. C lasses are
defi ned at compi lat ion t ime. C lass objects are the SOM run-t ime i m plementation of
SOM classes. Because the terms "c lass" and "c lass object" refer to the same
th i ng , but in d ifferent contexts (compi lation t ime and run t ime) , they can be used
i nterchangeably.

Objects are created dynamical ly dur ing run t ime. Objects are i nstances of classes.
The methods that an object responds to are referred to as instance methods,
because any object i nstance can perform them . An object's i nstance methods are
defi ned in its class defi nit ion, and cannot be used un less an object i nstance al ready
exists. Object i nstances are created by methods that operate on the class object to
cause it to produce an object i nstance. Class methods that create object i nstances

7•4 Appl ication Design Gu ide

are cal led factory methods, or constructors. SOM classes that def ine factory
methods for classes are cal led metac/asses. Metaclasses are classes of classes. A
class object is an i nstance of its metaclass.

The relationsh ip between objects, classes, and metaclasses is shown i n Figure 7-4.

Many of These

I
I

I -
An -

Object, �

·o· -

Only One of These Only One of These

,.....
The

Objecfs
Class, "C"

Defined here are
instance methods
for class "C" that
o8erate on objects
"

11 (instances of
class 11C 11) .

The Objecfs
Meta Class,

"M"

Defined here are
class methods
for class "M"
operate on cl

that
ass

(object) ��c�� to
�use it to p roduce
Instances of "C. II

Figure 7-4. Classes and Metaclasses

The SOM envi ronment can be created automatical ly or expl icit ly with i n any process
that uses it. SOM suppl i es three classes, as shown i n Table 7-1 . C lasses that make
up the SOM run-time envi ronment are packaged with the operat ing system i n
SOM.DLL.

Table 7-1 . SOM-Supplied Classes

Object Description

SOMObject Root c lass for a l l SOM classes.

SOMCiass Root c lass for a l l SOM metacl asses.

SOMCiassMgr Class for SOMCiassM grObject

SOMObject defi nes the essential behavior com mon to a l l SOM objects. Al l SOM
classes are subclasses of SOMObject. SOMCiass defi nes the essential behavior
com mon to a l l SOM class objects. SOMCiass is a subclass of SOMObject and is the
metaclass of the SOMObject class. By defi nit ion, SOMCiass is i ts own metaclass.
SOMCiassMgr is the class definit ion for the SOMCiassMgrObject that is created
duri ng SOM i n it ial ization .

Dur ing SOM i n itia l ization , fou r objects are created, as shown in Figure 7-5. Three
of these objects are class objects.

SOMObject
Class Object

SOMCiassMgrObject I .. SOMCiassMgr
Class Object

Figure 7-5. SOM Objects at Initialization

SOMCiass
� Class Object

-

The SOMCiass class object provides constructors for SOMObj ect class objects and
for the SOMCiassMgr class object. SOMObject defines a set of methods common to
al l SOM objects. Because al l classes are subclasses of SOMObject, they i nherit the
set of methods com mon to al l SOM objects. SOMCiassMgrObject is an i nstance of

Chapter 7. Object-Oriented Programming Using SOM 7-5

the SOMCiassMgr class object. SOMCiassMgrObject dynamical ly l oads and
unloads class l i braries when referenced and tracks i nstances of class objects.

Creating SOM Classes
The fi rst step i n creating a SOM class is to define the class and its relationship to
other classes. I n SOM, a class is defined i n a class definition fi le. Class definition
fi les are ASCI I fi les with an extension of .esc. The class definition is described in a
formal specification language, the SOM Object I nterface Definit ion Language (OIDL) .
OIDL has a language-neutral core (appropriate for any programming language) , to
which some m inor extensions have been added to s impl ify programming in C. For
OS/2 2.0, OIDL supports the C-programming language only.

The second step is to process the OIDL class definition fi le using the SOM compi ler
to produce a set of language-specific or use-specific binding fi les for the class. The
binding fi les then are used to bui ld class l i braries that can be used by cl ient
appl ications; that is, appl ications that are to create subclasses or object i nstances.
Note: Hereafter, any i nformation concerni ng SOM bindings is specifical ly geared
toward the SOM C-language bindings, as disti nguished from other SOM language
bindings.

Object Interface Defin ition Language
The class definition fi le provides a complete description of a class, i ncluding its
relationsh ip to other classes, its i nstance data, and the methods that it supports and
overrides. An Object I nterface Definition Language (OIDL) class definition fi le for C
language also descri bes i nformation specific to bui ld ing C-language binding fi les.
An OIDL class definit ion fi le for C language is divided i nto eight sections, as shown
in the Class Defi nition Fi le template in Figure 7-6 on page 7-7. The sections are
placed in the template in the recommended order.

7-6 Application Design Guide

Figure 7-6. Class Definition File Template

Three of the e ight sections are requ i red for a class definit ion f i le : the I nclude,
C lass, and Parent C lass sections. The I ncl ude section m ust describe where the
defi n it ions for the c lass's parent, ancestors, and metaclasses can be found. The
m in imum i nformation that the C lass and Parent Class sections m ust provide are the
names of the class and its parent class.

The Metaclass section is used to specify the name of a c lass's metaclass. This is
on ly necessary when the class's metaclass is not the same as i ts parent's
metaclass. If this is the case, the location for the metaclass defi nit ion must be
added to the I ncl ude section. If a metaclass name is not specified in this sect ion,
then i t is assumed (by default) that the c lass's metaclass is the same as its parent's
metaclass.

When a class has the same metaclass as its parent, new methods can be added to
the set of class methods, or class methods can be overridden by specifyi ng the
CLASS attri bute in the Data and Methods sections of the class defi nit ion fi le . When
this occurs, SOM creates a subclass of the parent class's metaclass, which then
becomes the c lass's metaclass. The c lass's metaclass is then referred to as an
implied metac/ass. Creat ing a subclass of the parent's class can be done expl icit ly
by creat ing another class defi nit ion. But i m pl i ed metaclasses e l im i nate the
overhead of these addit ional class def in it ions.

The Data section of a class def in it ion fi l e describes data elements contai ned by
objects of the class; that is , instance data. The Data section contains C-language
data declarations for i nstance data. I nstance data can be declared private or publ ic .
By default, i nstance data is private; that is, i t can be accessed only by methods of

Chapter 7. Object-Oriented Programming Using SOM 7-7

the class. It cannot be accessed by cl ient appl ications. Publ ic i nstance data is part
of the publ ished external i nterface and can be accessed by cl ient appl ications.

The Methods section of a class definition fi l e describes methods to which objects of
this class can respond, i ncluding overrides to methods of ancestor classes. The
Methods section contains the C-language function prototypes that define the cal l i ng
sequence for each method new to the class. The Methods sections also contains
the names of i nherited methods that wi l l be overridden, or implemented differently,
by the class. Methods can be private or publ ic. In contrast to i nstance data,
methods are publ ic by default.

The order in which publ ic i nstance data is declared, or methods are described, i n
the class definition fi le i s critical for future compatib i l ity, when new publ ic data or
methods m ight be i ntroduced in the class definition. Publ ic i nstance data can be
declared i n any order i n the Data section of the class definition fi le . Methods are
described i n the Methods section of the class definition f i le, and can be in any order
or grouped by function category. By default, when the SOM compi ler processes the �
class definition f i le, it bu i lds the i nternal data structures for the binding fi les based
on the order i n which the publ ic i nstance data and methods are described in the
class definit ion fi le. If, at a l ater date, new data or methods change the original
ordering of publ ic dat� and methods for the class, the binding f i les and class l i b rary
are bui l t differently. C l ient appl ications then must be recompi led.

The Release Order section of a class definition fi le is the SOM sol ution to
maintain ing compatibi l ity between changi ng class defin itions and cl ient
appl ications. This section contains a l ist of al l method names and publ ic i nstance
variables i ntroduced by the class. The ordering of this l ist does not necessari ly �

match the orderi ng of the i nstance-data declarations i n the Data section or the
orderi ng of the method descriptions in the Methods section. The Release Order l ist
overrides the default processing of the SOM compi ler. It di rects the SOM compi ler
to process the data declarations and method definit ion i n the order specified, not as
they occur i n the class defi nition f i le . This means that if a new method is i nserted i n
a method group i n the m iddle of the Methods, section and the method name is
added to the end of the Release Order l i st i n the Release Order section,
compatib i l ity with cl ient appl ications can be preserved.

Note: If you want the SOM compi ler to produce a release order section for you �
automatical ly, you m ust request a .CS2 f i le . The .CS2 fi l e w i l l have same content as
the orig inal class definition fi le, except that its release order statement wi l l always
be complete (even if the release order statement i n the class definit ion fi le is not) ,
and a consistent com ment style wi l l appear throughout.

Figure 7-7 shows the structure of a sample class definit ion fi le that groups methods
that operate on i nstance data. In this example, the Release Order l ist groups
related methods and data accord ingly; that is, by i nstance variable and the functions
that operate on that i nstance variable.

7-8 Appl ication Design Gu ide

Figure 7-7. Structure of a Sample Class Definition File

If methods that operate on a th i rd i nstance variable are added to the class defi nit ion
f i le, compatib i l i ty with c l ients of the Example class defi ned in F igure 7-7 can be
mai ntai ned by modifyi ng the release order, as shown in F igure 7-8.

Chapter 7. Object-Oriented Programming Using SOM 7-9

Figure 7-8. Maintaining Compatibility by Modifying the Release Order

I n F igure 7-8, the get_var3 and set_var3 methods are i nserted i n the get_methods
and set_methods groups, respectively. The var3 i nstance variable is added to the
end of the l i st of i nstance data. The new i nstance data and method names are
added to the end of the Release Order l ist.

Without a Release Order l ist, the data and methods in the fi rst version of the
Example class are processed in the order in which they occur in the f i le :

varl , var2 , get_varl , get_var2 , set_varl , set_var2

Without a Release Order l ist, the data and methods i n the second version of the
Example class are processed in the order in which they occur in the f i le :

varl , var2 , var3 , get_varl , get_var2 , get_var3 , set_varl , set_var2 , set_var3

Without a Release Order l i st, the data and method i nformation maintai ned by SOM
in the object data structures bu i lt for the fi rst version of the Example class do not
match that bui lt for the second version of the Example class. The second version is
not compatib le with cl ients of the fi rst version.

A class definit ion fi l e is made more readable by the use of comments. Several
comment styles are supported by OIDL, as shown in F igure 7-9 on page 7-1 1 .

7-1 0 Application Design Guide

Figure 7-9. Syntax of 0/DL Comments

Because OIDL class defi n it ion fi l es are used to generate l anguage b ind ings,
com ments m ust be strictly associated with particular e lements, so they appear at
the appropriate points in the output fi l es, If comments are not pl aced as p rescribed
by the OIDL syntax, they m ight not appear where you expect to see them.

Throw-away com ments are not i ntended to appear in any binding fi l es. They may
be placed anywhere i n a class defin it ion f i le . They can be used to comment out
sections of a class defi nit ion f i le or add h istorical or notational com mentary.

Processing Class Defin ition Files
Figure 7-1 0 shows how a class defin it ion f i le is processed by the SOM compiler.

Environment Variables C-Language Bindings

I SET SMINCLUDE = I l .cs2 l l ·sc I I ·Psc i
EJ I.PH I � I SET SMEMIT = I __. SOM

f---. ! sET SMTMP = I r+ Compiler EJ
Class Definition File

1 .DEF I
I .esc t-

Figure 7-10. Processing a Class Definition File

The SOM compi ler processes the class defin it ion f i l e for a SOM class and generates
a set of l anguage binding f i les. The f i le name of a SOM C-language b inding file
corresponds to that of the class def init ion fi l e (.CSC) processed by the SOM
compi ler. Each SOM C-language fi l e has a d ifferent extension. For example, the
SOM compi ler processes EXAMPLE.CSC and generates EXAMPLE.C, EXAMPLE.H,
and so forth. The language b ind ing fi les generated by the SOM compi ler are
described i n Table 7-2.

Chapter 7. Object-Oriented Programming Using SOM 7-11

Table 7-2. SOM C-Language Bindings Files

File Extension

.c

. H

. I H

. PH

. DEF

. sc

. PSC

. CS2

Description

Template for C-language source program for the c lass
i m plementation .

Publ ic i nc l ude f i le for a l l C-l anguage programs that need to
access the SOM class .

I mplementation header conta in ing most of the automatical ly
generated i m plementation detai ls about the class .

M acros for private methods defi ned i n the class .

I nstructions to the l i nker about how to bu i ld a c lass l i b rary .

Language-neutral form and subset of the SOM class defi n it ion
fi l e with private- implementation deta i l removed . This fi le should
be " pub l ished " (or exported, made avai lable) to users of the
class .

Supplement to .SC fi l e that conta i ns i nformation about private
methods of a class .

Styl ized form of the or ig inal c lass defi n it ion f i le .

Some of these f i les conta in the publ ic i nterface for the class; others contai n the
private i nterface. Some f i les are used to i mplement the class and its subclasses
and some are used by cl ient programs that create and manipu late object i nstances
of the class.

Note: The SCM compi ler can also accept .SC fi l es as i nput. In this case, only the .H
f i les that are created are meani ngfu l , but th is is a major use of the SCM
compi ler. In those cases where only the .SC fi l es are publ ished, these f i les
can be used to generate .H f i les. I n order to obtai n a neutral .H f i le for use

with any C compi ler, compi le the .SC fi l e as shown in Figure 7-1 1 .

Figure 7-1 1 . (SOM) Compiling .SC Files

The . IH and .C fi l es are the C-language source fi l es for the class i m plementation. . �

The . IH f i le is automatical ly i ncl uded i n the .C fi le . The .SC fi l e is specified i n the
I nclude section of the cl ass defi nit ion f i les for subclasses of the class. The .H f i le
must be i ncluded i n c l ient programs to create and manipulate object i nstances of
the class. The . PH and .PSC f i les are the counterparts to the . IH and .SC fi l es.
These conta in the private i nterface for the class and should be reserved only for
class i m plementers who need to access the c lass's private methods.

A set of envi ronment variables, as shown in Table 7-3, control SCM-compi ler

processi ng. SMTMP is optional and defaults to the root d i rectory of the current

drive. If the f i les specified in the I nclude section of the class defin it ion fi l e are

enclosed in double quotation marks, SMINCLUDE is optional and defaults to the root

d i rectory of the current d rive. If the fi les specified in the I nclude section of the class

defi nit ion fi l e are enclosed i n angled brackets (< >) , SMINCLUDE is requ i red for

SCM-compi ler processing. SMEMIT is used to i nd icate which b ind i ngs f i les are

generated.

7-1 2 Appl ication Design Guide

Table 7-3. SOM Environment Variables

Variable Description
S M INCLUDE Specify location of c lass definit ions.

S M E M IT Specify which b ind ing fi l es are to be generated.

SMTMP Specify d i rectory SOM can use for i ntermedi ate f i les.

A Simple Class Implementation
The language bindi ng fi les generated by the SOM compi ler i ncl ude a template for
the C-language source program for the class implementat ion. This program
tem plate contai ns stub procedures for al l new and override methods specified in the
class defin it ion fi le. The appl ication developer must supply the code
i m plementation for the stub-method procedures. F igure 7-1 2 through Figure 7-1 8
on page 7-1 5 i l l ustrate the stages i n th is process.

Figure 7-12. Class Definition File

I n F igure 7-1 2, the Dog class is defi ned. Accord ing to this class defi nit ion fi le , the
Dog class is derived from the SOMObject class. The behavior of the SOMObject
class is defi ned i n the f i le , SOMOBJ.SC, which was generated by the SOM compi ler
when the SOMObject class was i m plemented. Object i nstances of the Dog class
i nherit the behavior of its parent class SOMObject by specify ing the SOMOBJ.SC fi l e
i n the I nclude section of the Dog class definit ion fi le . This means that al l methods
that can act on i nstances of SOMObject can act on Dog class objects.

I n the real world , dogs have many characteristics and behaviors. A comprehensive
defi nit ion of the Dog class would i ncl ude methods that relate to these characterist ics
and behaviors. For this example, the only behavior that is defi ned is " barki ng" . The
behavior, "dogs can bark" corresponds to the prototype of the " bark" method
specified in the Methods section of the class defi nit ion f i le .

Chapter 7. Object-Oriented Programming Using SOM 7-1 3

Figure 7-13. C-Language Source-Program Template for Implementation of Dog Class

The SOM compi ler processes the DOG.CSC f i le as shown i n Figure 7-1 2 on
page 7-1 3 and generates the DOG.C C-language source-program template shown i n
Figure 7-1 3. Notice that DOG. IH , another ti le generated by the SOM compi ler, i s
automatical ly i ncluded i n this program template. This fi le contains the data
structures, macros, and functions for accessing data and methods for object �.
i nstances of the Dog class. This f i le also provides stubs for al l methods prototyped
in the Methods section of the DOG.CSC f i le . The general form for a method stub is
shown i n Figure 7-1 4.

Figure 7-14. General Form for a Method Stub

SOM_Scope and SOMLINK are C macros used i nternal ly with the C-bindi ng fi les.

somSelf is a pointer to an object i nstance of the class < classname > . Because the
same method can be i nvoked on different objects but implemented differently
(polymorphism), a poi nter to the object being operated on is requi red as a
parameter i n the method i nvocation. The fi rst parameter i n the method i nvocation is �
always somSelf. This means that if the method prototype i n DOG.CSC for the " bark"
method is specified as shown in F igure 7-1 5, the SOM compi ler generates the
C-language source-program template fi le as shown in Figure 7-1 6.

Figure 7-15. Prototype of Method with Parameters

Figure 7-16. Stub of Method with Parameters

7-14 Application Design Guide

The pointer somThis is a pointer to data for an object i nstance of the c lass
< c lassname > . < classname > Data is a class data type automatical ly generated
by the SOM compi ler and placed i n the . IH fi le .

< classname > GetData and < classname > Method Debug are class macros
automatical ly generated by the SOM compi ler and placed i n the . IH fi le .
< classname > GetData gets the data for the object i nstance (somSelf) of the class.

Note: Methods that access the object's data use the < c lassname > GetData macro
to establ ish addressabi l i ty. This macro must be one of the fi rst executable l i nes of
code i n each method, and the val ue it returns should be assigned to a local variable
named "somThis. " The SOM compi ler automatical ly generates the code that
accompl ishes this i n each method stub i n a .C fi le .

< classname > MethodDebug provides method-trac ing capab i l i t ies. This custom
macro is generated as part of the method stubs produced in the .C program
template. It takes two arguments-a class name and a method name-and if
SOM_Tracelevel h.as the val ue 1 or 2 , produces a message each t ime a method is
entered. (Sett ing SOM_Tracelevel to 2 also causes the methods suppl ied as part of
the SOM run t ime to generate method trace output.) To suppress the generation of
method tracing code, place a l i ne s im i lar to the one shown i n F igure 7-1 7 i n your .C
f i le after the #i nclude statement for < classname > . IH :

Figure 7-1 7. Suppressing SOM Tracing

To com plete the class-i m pl ementation process, the app l ication developer modifi es
the C-language source-program tem plate as shown i n F igure 7-1 8. The developer
must supply the code for each of the stubbed method procedures. In the example,
"dog barking" is i m plemented as " pri nti ng the sound a dog makes, " or, " pri nt ing
Unknown Dog Noise. " Because the C-l i brary PRINTF rout ine is used to i mplement
this function, STDIO.H also must be i ncluded in the source program.

Figure 7-18. C-language Source Program for Implementation of Dog Class

Chapter 7. Object-Oriented Programming Using SOM 7-1 5

SOM Macros, Functions, and Data
I n order to effectively use the SOM C-language b ind i ngs, an understand ing of the
SOM nam i ng conventions is needed. These are summarized in Table 7-4.

Table 7-4. SOM Naming Conventions

Prefix Use

som Function and M ethod Names

SOM Data items

For example, methods for the SOM objects provided by the SOM run t ime have the
prefix, "som. " Constants, data types, and poi nters to functions (th is i ncl udes macro
names) have the prefix, "SOM . "

Next, and most i mportantly, you need to understand SOM macros. SOM macros are
used by class i m plementers and by c l ient programs to:

• I nstantiate objects
• Access object variables
• I nvoke object methods

SOM macros shield the programmer from the detai ls and com plexity of SOM data
structures, method resol ution, and function i nvocations. There are two types of
SOM macros:

• Class-specific
• Non-class-specif ic, or general

Class-Specific SOM Macros
Class-specif ic macros resolve references to class methods, class functions, and
class i nstance data. The macro name or macro parameters contai n a class method
name, a class function name, an i nstance variable name, or the class name. The
SOM compi ler automatically generates them and places them in the class header
f i les. C lass i m plementers can use them by i nc luding the class-i mplementation
header fi l e (. IH) in thei r source programs. C l ient programs can use them by
i nc lud ing the publ i c class header fi l e (.H) . Because the . IH fi l e i ncl udes the .H f i le ,
some class macros (those defi ned i n the .H fi l e) are avai lable to both c lass
i m plementers and c l ients, and some (those defi ned i n the . IH fi l e but not i n the .H
fi le) are avai lable on ly to class i m plementers.

The s implest macro is the "_" (underscore) macro. Object i nstance data can be
referred to by preced ing the name of the data element with an underscore
character, as shown in F igure 7-1 9. Underscored-data-name macros are defi ned i n
the .H publ ic class header fi l e and are avai lable to both class implementers and
cl i ent programs.

Figure 7-1 9. Underscored-Data-Name macro

Object methods can be si m i larly referred to and i nvoked by precedi ng the method
name with an underscore character, as shown i n Figure 7-20 on page 7-1 7.
Underscored-method-name macros also are defi ned in the . H publ ic class header
file and are avai lable to both class i m plementers and cl i ent programs.

7-1 6 Appl ication Design Guide

Figure 7-20. Underscored-Method-Name macro

When nonre lated classes i ndependently defi ne methods with the same name, thei r
methods can be i nvoked with a variation of this macro. The method name is
prefixed with the underscore character and class name, as shown i n F igure 7-2 1 .

Figure 7-21 . Invoking Methods with Identical Names but Nonrelated Classes

Class objects also can be referred to by preced ing the class name with an
underscore character. Underscored-class-name m acros also are defi ned i n the . H
publ ic class header f i l e a n d are avai lab le t o both class i m plementers and cl ient
programs.

Other class-specific macros are summarized in Table 7-5.

Table 7-5. Class-Specific Macros

Function Macros

I nstantiate objects < classname > New
< classname > Renew

Access i nstance data get_ < i nstance variabl e > ,
< c lassname > GetData

I nvoke m ethods SOM_Resolve
SOM_ ResolveNoCheck

I nvoke parent m ethods parent_ < methodname >
SOM_ParentResolve

Trace methods < classname > M ethod Debug

Of the macros l i sted in Tabl e 7-5, < cl assname > GetData and the parent method

macros are defined in the . IH fi le , but not i n the .H f i le . They are avai l ab le only for

class i m plementers.

A class-specif ic function also is def ined i n the .H fi l e associated with a class. This
function, < c lassname > NewCiass, creates the class object. It i s i nvoked
automatical ly when an object is i nstantiated through the < classname > New class
macro.

Chapter 7. Object-Oriented Programming Using SOM 7-1 7

General SOM Macros and Functions
SOM provides a set of non-class-specific, or general SOM macros and functions that �

support:

• ID manipu lation
• Debugg ing
• Error handl i ng
• Gett ing object i nformation

General SOM macros are defi ned in the SOM. H header fi le . Because SOM.H is
i ncl uded i n the class header (.H and . IH) f i l es, SOM macros are avai lable to class
implementers and c l ient programs.

SOM ID Manipulation: I Ds are numbers that un iquely represent stri ngs. They can
be used in SOM to identify method names, class names, and descriptors. Typical ly,
they are used to provide a fast and efficient means of comparing the stri ngs they
represent.

SOM provides a set of macros and functions, as shown in Table 7-6, that can be
used to manipu late SOM IDs.

Table 7-6. Macros and Functions for Manipulating SOM IDs

Type Interface

M acros SOM_CheckiD
SOM_Compare i Ds
SOM _ Str ingFrom i D
SOM_I DFromStr ing

Functions somRegisterld
somUniqueKey
somTotai Reglds
somSetExpectedlds
somBegi n Persistentlds
somEndPersistentlds

I n it ia l ly an ID is a poi nter to a stri ng . A SOM ID is automatical ly converted to an
i nternai iD representation by the SOM_CheckiD macro or by the fi rst i nvocation of
any of the I D manipu lat ion macros. Because the representation of an ID changes, �
SOM I Ds are of a special data type (som/d) .

SOM Debugging: The SOM run-ti me l i b rary provides a means of generati ng
character output by i nvoking macros and functions that cal l a replaceable SOM
procedure cal l ed SOMOutCharRouti ne. These macros and functions are avai lable
to assist the appl ication developer with debuggi ng an appl i cation. Output generated
by the debug macros can be conditional ly suppressed or produced based on the
sett ing of four g lobal variables. Table 7-7 summarizes the SOM debuggi ng macros
and the g lobal variables that affect them.

Table 7-7. SOM Debug Macros and Control Variables

Macro Control Variables

SOM_TestC SOM _ Warnlevel

SOM_WarnMsg SOM _Warn level

SOM_Assert SOM _ Assertlevel

SOM Expect SOM Warnlevel

7-1 8 Appl ication Design Guide

I n addit ion to the debug macros, SOM provides a function, som Pri ntf, that
unconditional ly generates character output. The i nterface to somPrintf is i dentical
to the pri ntf C-l i b rary routine.

SOM Error Handling: The SOM run-t ime l i b rary also provides a way to hand le SOM
errors by i nvoking macros (SOM_ERROR and SOM_TEST) that cal l a replaceable
SOM procedure cal led SomError. SomError produces a message, an error code,
and can, if appropriate, end the process where the error occurred. SOM errors are
c lassified by severity, which is i nd icated in the low-order d ig it of the SOM error
code. There are three SOM error classes, or severity levels, as shown i n Table 7-8.

Table 7-8. SOM Error Severity Levels

Severity Level Description

SOM_Ignore Normal and i nformational only

SOM_Warn Abnormal but not unrecoverabl e

SOM_Fatal Abnormal and unrecoverable

Getting SOM Object Information: A SOM class i m plementer or c l ient program can
easi ly determ ine the class of an object by i nvoking the SOM_GetCiass macro. This
macro returns a pointer to the class object. A l l SOM class objects support methods
(for example, somGetlnstanceSize) that return i nformation about the objects they
create. Therefore, by determi n i ng the class of an object and i nvoki ng class object
methods, more can be learned about the or ig i nal object.

Replaceable SOM Functions: The SOM run-t ime envi ronment uses SOM functions
that perform memory management, DLL management, character output, and error
hand l ing . These functions are replaceable. This means that you can override them
by supplyi ng your own version of the default SOM functions. Replaceable SOM
functions are summarized in Table 7-9.

Table 7-9. Replaceable SOM Functions

Category Functions

Memory Management SOMCal loc
SOM Free
SOM Mal loc
SOM Real loc

DLL M anagement SOMCiassl nitFuncName
SOM Del eteModule
SOMLoadModule

Character Output SOMOutCharRoutine

Error Hand l i ng SOM Error

Figure 7-22 on page 7-20 shows how a user-defined function can be substituted for
one of the replaceable SOM functions.

Chapter 7. Object-Oriented Programming Using SOM 7-1 9

Figure 7-22. Replacing SOM Functions

Invoking Methods and Accessing Data
The basic ni les for i nvoking methods and accessing object data can be summarized �

as fol lows:

• Object data can be referred to by precedi ng the name of the data element with
an underscore character. Th is is only val id in a method of the c lass, and then
only for the object bei ng operated on.

• Methods can be i nvoked by preceding the method name with an underscore
character. Method parameters always i nclude a poi nter to the object being
operated on. I nvocation of i nstance methods requ i res a pointer to an i nstance
object. I nvocation of class methods requ i res a poi nter to a class object.

These ru l es can be i l l ustrated by i ntroduci ng three new methods for the Dog class
that relate to more dog characterist ics and gett ing and sett ing behaviors. Because
dogs can be characterized by thei r breed, a user should be able to get and set the
breed for a dog. It wou ld also be desi rable to v iew or d isplay the characterist ics of
a dog. I n F igure 7-23 on page 7-21 , the act ion of getti ng and sett ing a dog's breed
corresponds to the prototype for the getBreed and setBreed methods in the
DOG.CSC f i l e. The action of displaying a dog's characterist ics corresponds to the
prototype for the display method.

7-20 Application Design Guide

Figure 7-23. Invoking Methods and Accessing Data in a New Dog Class (DOG.CSC)

Figure 7-23 also i ntroduces the use of i nstance data that supports the methods that
can operate on dog objects. Each dog has its own "copy" of the i nstance data
associated with it. In this example, the breed of a dog is stored i n a stri ng cal led
" breed " . The setBreed method f i l ls the stri ng with the appropriate characters. The
getBreed method gets the contents of the stri ng.

From the new DOG.CSC f i le , the SOM compi ler generates a new C-language
source-program template, which is used to complete the implementation of the new
Dog c lass, as shown in F igure 7-24 on page 7-22.

Chapter 7. Object-Oriented Programming Using SOM 7-21

Figure 7-24. Implementation of a New Dog Class (DOG.C)

The fi rst th ing that is noticeable i n F igure 7-24 is that the i nstance-data declarations
are not present. They have been placed in the c lass-i m plementation fi l e (DOG . IH)
by the SOM compi ler . As before, DOG. IH contai ns a l l the def in itions of the Dog
class data, macros, and functions.

The setBreed and getBreed methods operate on the stri ng, " breed, " and refer to it
by prefix ing the stri ng name with the underscore character. The setBreed method
uses the C-l ib rary routi ne, strcpy, to fi l l the stri ng with the dog's breed, as specified
as a parameter to the method. To resolve the reference to strcpy, STRING.H is
i ncl uded in the source program .

The display method requ i res that the dog's characteristics (that is , its breed and its
bark) are displayed. To do this, the display method cal ls both the getBreed and
bark methods, which are referenced by prefix ing the method name with the
underscore character.

Final ly, as in the previous i m plementat ion of the Dog class, the i nclude f i le ,
STDIO.H, is added to the source program to resolve the reference to the C-l i brary
routi ne, pri ntf, which is used to display the dog's characteristics. The SOM function,

7-22 Appl ication Design Guide

somPrintf, can be used i n place of pri ntf; no additional i nclude f i le is requi red i n this
case. I n fact, i t is recommended that SOM class i m plementations use the SOM
functions, where appropriate, i nstead of the C-l i b rary functions. SOM functions offer
f lexib i l i ty and replaceabi l ity.

A SOM Client Program
So far, the examples have shown how to define and i m plement SOM classes, but
have only mentioned SOM c l ient programs. SOM c l ient programs are appl ications
that create and manipulate SOM objects.

A SOM c l ient of the new Dog class can, for s impl icity, create an i nstance of the Dog
class, defi ne i ts breed, and display its characteristics. This sim ple SOM c l ient is
shown i n F igure 7-25.

Figure 7-25. Client of the New Dog Class

To create and manipu late SOM objects, a c l ient program m ust have access to the
object's publ ic methods. In the same way that class data, methods, and functions
are avai lable to class i m plementers through the . IH fi l e associated with the class
i m plementation, class data methods and functions are avai lable to c l ient programs
through the .H f i l e associated with the class implementation. In the cl ient program
example in F igure 7-25, DOG. H is i ncl uded to resolve references to the dog object's
publ ic methods.

In the example, the variable Zack is def ined as a pointer to an i nstance (object) of
the Dog class. I n general , a poi nter to an i nstance of a class is declared as shown
in F igure 7-26.

Figure 7-26. Defining an Object

The DogNew Dog class macro then is used to create an i nstance of the Dog class

and return the poi nter i n the variable Zack. DogNew is defi ned i n DOG.H and is a

method i nherited from the parent (SOMObject) of the Dog class and tai lored for the

Dog class. The DogNew macro expands-to i nvoke the somNew method. somNew

i nvokes the DogNewCiass function, which creates the Dog class object, if it has not

yet been created. The Dog class object m ust be created before its i nstances can be

created. If i nstances of the Dog class are created through some mechanism other

than DogNew, the DogNewCiass function m ust be i nvoked in the cl ient program.

Because the setBreed and display methods are publ ic and are defined i n DOG.H ,
the c l ient program can i nvoke them i n the same manner as the class

Chapter 7. Object-Oriented Programming Using SOM 7-23

i mplementation: by prefix ing the m ethod name with the underscore character. I n
the c l ient program, the pointer t o the dog object (Zack) is the fi rst parameter for �

these methods. The setBreed method is cal l ed to set Zack's breed as "Yorkshi re
Terrier. " The display m ethod i nvokes the g etBreed and bark methods and prints the
dog's breed and bark.

Final ly, the somFree m ethod rel eases resources a l located when an object is created
by somNew. As previously m entioned, somNew is i nvoked by the DogNew macro.
The somFree method, l i ke somNew, is a method inherited from the parent
(SOMObject) of the Dog c lass. The somFree method m ust be cal l ed if somNew is
used to create an object.

The output from the c l ient program is shown i n F igure 7-27.

Figure 7-27. Output from Client of Dog Class

Inheritance and Polymorphism: Overriding Methods
In the Dog class example, the Dog class is derived from SOMObj ect. Object
i nstances of the Dog c lass i nherit SOMObject behavior; that is, al l SOMObj ect
methods can operate on i nstances of the Dog class. I n addition, the Dog c lass
example defined methods not defined for SOMObj ect. The Dog class is a subclass
of SOMObject.

Note: Al l c lasses are derived, either d i rectly or i nd i rectly, from SOMObject.

LittleDogs and BigDogs, subc lasses of the Dog class, can be defined. These
subclasses i nherit the behavior of the i r parent c lass (Dog class) , as wel l as the
behavior of the i r parent's parent class (SOMObject) . If the Dog class had been
derived from other c lasses that were derived from SOMObject, the new subclasses
would also i nherit the behavior of these ancestor classes. I n addition to adding new
methods to those inherited from ancestor c lasses, subclasses can modify or
override any i nherited methods.

The i nheritance rel at ionsh ip between the new subclasses (LittleDog and B igDog)
and thei r ancestors (Dog and SOMObject) is shown in Figure 7-28.

/: ::: :
Figure 7-28. Inheritance Relationships Between Classes and Subclasses

LittleDogs and B igDogs can be d ifferent iated by the sound, or bark, they make. For
this example, i nstead of making an "Unknown dog noise , " l ittl e dogs "Yap" and b ig
dogs "WOOF. " Th is means that the Litt leDog and B igDog classes imp lement the
bark method i nherited from the Dog class differently. In the c lass defi nit ion fi l es for
the LittleDog and B igDog classes (Figure 7-29 and F igure 7-30) , th is is i nd icated as
a method override.

7-24 Application Design Guide

Figure 7-29. LDOG.CSC-LittleDog Class Definition File

Figure 7-30. BDOG.CSC-BigDog Class Definition File

Because the parent of the Litt leDog and B igDog classes is the Dog class, DOG.SC
must be i ncl uded in the c lass definit ion f i les so that methods of the Dog class are
i nherited and can be referenced.

The i m plementations of the LittleDog and B igDog classes are s im i l ar to the
i m plementation of the Dog class. In the i m plementation of the LittleDog class, as
shown in F igure 7-31 , the i nclude fi le , LDOG. IH , contai ns the defi n it ions for LittleDog
class data, macros, and functions. The i m plementation of the bark method reflects
the yapping of l i ttl e dogs.

In the i m plementation of the B igDog class, as shown in F igure 7-32, the i nclude f i le ,
BDOG. IH , contai ns the defi nit ions for B igDog class data, macros, and functions. The
i m pl ementation of the bark method reflects the WOOFing of big dogs.

Figure 7-31 . LDOG.C-LittleDog Class Implementation

Chapter 7. Object-Oriented Prog ramming Using SOM 7-25

Figure 7-32. BDOG.C-BigDog Class Implementation

In order for a cl ient program of the Dog, B igDog, and LittleDog classes to access
publ ic methods for these classes, the cl ient program m ust i ncl ude the publ ic class
header (. H) f i les for the respective classes. I n F igure 7-33 on page 7-27, the c l ient
of these classes i ncludes DOG.H , LDOG.H , and BDOG.H f i les. F igure 7-34 on
page 7-27 shows the output from this cl i ent program .

7-26 Application Design Guide

Figure 7-33. Client of Dog, BigDog, and LittleDog Classes

Figure 7-34. Output from Client of Dog, BigDog, and LittleDog Classes

Chapter 7. Object-Oriented Programming Using SOM 7-27

Metaclasses
In the i m plementation of the Dog, B igDog, and LittleDog classes, a metaclass is not
specified i n the Metaclass section of the class defi nit ion fi l es. This means that the
metaclass of each of these classes is the metaclass of the i r parent c lass. The
metaclass of the B igDog and LittleDog classes is the metaclass of i ts parent class
(Dog). The metaclass of the Dog class is the metaclass of i ts parent class
(SOMObject) , and the metaclass of the SOMObject class is SOMCiass. SOMCiass,
then, suppl i es the constructors for the Dog, B igDog, and Litt leDog classes, as well
as for SOMObject.

If a metaclass is specified i n the Metaclass section of the class defi n it ion f i l es, a
new metaclass is defi ned for the classes. The new metaclass provides new
constructors for the classes. As an example, if a new metaclass, DogMata, is
defi ned for the Dog class, the class defi n it ion fi l e for this class is shown i n
F igure 7-35.

Figure 7-35. DOGMETA.CSC-Ciass Definition for Metac/ass of Dog Class

Because SOMCiass is the root class for al l metaclasses, DogMata is derived from
SOMCiass. This is reflected i n the Parent and I ncl ude sections in the class
defi n it ion fi l e for the Dog Meta class. The only method that DogMata defi nes is
newDog, the constructor that creates an i nstance of the dog class.

Figure 7-36. DOGMETA.C-Implementation of DogMata Class

The i m plementation of the DogMata class, as shown i n Figure 7-36, is si m i l ar to the
i m plementation of the Dog class. However, DOG META.C is also a cl i ent of the Dog
class: the newDog method returns a poi nter to an i nstance of the Dog class. To
resolve this data type duri ng the C-language com pi lat ion of DOGMETA.C, DOG.H
m ust be i ncl uded.

7-28 Appl ication Design Guide

Before the C-language compi lation of DOGMETA.C is done, the Dog class definit ion
f i le m ust be redefi ned to associate the new metaclass with the Dog class. The new
class defi nit ion f i le for the Dog Class is shown in F igure 7-37 on page 7-29.

Figure 7-37. DOG,CSC-Associating a Metaclass with a Class

The new Dog class defi nit ion f i le has a Metaclass section. The .SC f i le associated
with the DogMeta metaclass is now requ i red i n the I nclude sect ion. When the SOM
compi ler processes DOG.CSC, it generates a new DOG.H fi l e that i ncl udes
DOGM ETA.H .

The fi nal i m plementation of the new Dog class is identical to the previous example.
C l ients of the Dog class, however, i nstantiate i nstances of the Dog class differently,
as shown in F igure 7-38.

Figure 7-38. Client of Dog and DogMeta Classes

The constructor method (that is, the method that creates i nstances of an object) for
the Dog class is now newDog. In the previous examples, the DogNew macro was
used to i nstantiate Dog objects. Because the DogNew macro i nvokes the
DogNewCiass function to create the Dog class object, the previous c l ient programs
did not have to i nvoke DogNewCiass di rectly. Because the i m plementation of the

Chapter 7. Object-Oriented Programming Using SOM 7-29

newDog method does not cal l the DogNewCiass function, the new c l ient program is
requ i red to do so.

The parameters for the DogNewCiass function are defi ned by the class i m plementer
i n the DOG.CSC f i le . MajorVersion and M i norVersion are attri butes defined i n the
Class section of the class defi nit ion f i l e and used by the DogNewCiass function to
determ ine compatib il i ty with versions of the class l i brary. I n this example,
Dog_MajorVersion and Dog_Mi norVersion have not been previously defi ned i n the
CLASS section of the DOG.CSC f i le .

Implied Metaclasses
If a metaclass is not specified i n the Metaclass section of a class defi nit ion fi le , the
class's metaclass is , by default, its parent's metaclass. This was demonstrated i n
the earl iest Dog class examples. I f a class's metaclass i s d ifferent from its parent's
metaclass, then it m ust be specified in the Metaclass section of the class definit ion
f i le . This was demonstrated in the latest Dog class example. The same process can
be fol lowed to derive a c lass's metaclass from its parent (that is, create a subclass �

of the parent's metaclass). This requ i res a separate .esc f i le and generates
associated b ind ing fi l es for each class and metaclass.

A subclass of a parent's metaclass can also be created by usi ng impl i ed
metaclasses. This is accompl ished by defi n ing new and overrid ing existi ng class
methods with in the class's .esc fi le .

Using the earl iest Dog class example, an i m pl i ed metaclass can be used to add a
function to the Dog class object to keep count of the dog population. The class
defi nit ion f i l e for the Dog class with an impl ied metaclass is shown i n F igure 7-39.

Figure 7-39. DOG.CSC-Implied Metaclass for the Dog Class

7-30 Application Design Guide

I n this example, the CLASS attribute is specified i n both the Data and Method
sections of the class defin it ion. The CLASS attri bute in the method prototypes
i nd icates that the methods are new or overrides to existi ng class methods defined i n
the metaclass (SOMCiass) of the parent of the Dog class. The CLASS attri bute i n
the data declarations i nd icates that the data is associated with the class methods.

The Class section also contains a prefix specification (DogCiass_) for class methods
that are defi ned in this class defi nit ion f i le . The i m plementat ion of the Dog class
and its i m pl i ed metaclass, as shown i n F igure 7-40, is si m i l ar to the previous
examples .

Figure 7-40. Implementation of an Implied Metaclass for the Dog Class

SOM_CurrentCiass is used to separate the i m plementation of the i nstance methods
from the i mplementation of the class methods. The class methods defi ned i n
DOG .CSC are prefixed with DogCiass_, as i nd icated i n the Class section of the
DOG.CSC f i le .

When an i m pl i ed metaclass is used to defi ne a subclass of a parent's metaclass,
SOM defi nes a metaclass that is separate from either the class or i ts parent's
metaclass. The class data, macros, methods, and functions related to this class
have the prefix, M_. For example, somSelf is defi ned as a poi nter to an i nstance of

Chapter 7. Object-Oriented Programming Using SOM 7-31

the metaclass, M_Dog; that is , to the Dog class object. A c l ient of the Dog class with
an i m pl i ed metaclass is shown in F igure 7-41 on page 7-32. �

Figure 7-41 . A Client of the Dog Class with an Implied Metaclass

The cl i ent program defi nes DogMata as a poi nter to a class object. The
_somGetCiass method i nherited from the parent (SOMObject) of the Dog class is
used to get a poi nter to the Dog class object. Fi nal ly, the c lass method, countDogs
is i nvoked by the Dog class object.

Building SOM Class Libraries
Two basic rules expla i n the process of bui ld i ng SOM class l i braries:

• .SC fi l es for a c lass's metaclass, parent c lass, or ancestor class are requ i red for
the SOM compi ler to process a class definit ion f i le . These fi les establ ish the
relationsh ips between classes.

• .H fi l es are requi red for C-language compi ler processi ng and bu i ld ing of the
class l i brary. These f i les resolve references to methods defi ned in other f i les.

With these ru les in m ind, the basic process for bu i ld ing a SOM class l i brary can be
sum marized as fol lows:

1 . Create .CSC fi l es and do SOM compi lation for all parent and ancestor classes
and the i r related classes.

2. Create .esc fi l es for a class and its metaclass (if any) .

3. Do a SOM compi lation of the metaclass .esc f i le .

4 . Do a SOM compi lation of the class .esc f i le .

5. Do C-language compi lations of .C i mplementation fi l es, i n any order.

7-32 Application Design Gu ide

SOM ANIMALS Sample Program in the OS/2 2.0 Toolkit
The ANIMALS program i ntroduces a programmer to basic SOM and object-oriented
programm i ng concepts. I t defines six c lasses whose relationship corresponds to a
zoological c lassification of anim als. The classes and thei r relationships are shown
in F igure 7-42.

MetaCiass

Meta Class

MetaCiass

Figure 7-42. Class Relationships in ANIMALS Sample Program

The ANIMALS sample program is an expansion of the Dog class examples that have
been used throughout this chapter. B igDog and Litt leDog are subclasses of the Dog
class. Dog is a subclass of the Animal class, which is a subclass of SOMObject.
DogFactory is a subclass of AnimaiFactory, which is a subclass of SOMCiass.
SOMCiass and AnimaiFactory provide constructor methods for the Ani mal c lass.
SOMCiass, AnimaiFactory, and DogFactory provide constructor methods for the
Dog, B igDog, and Litt leDog classes.

The c lass defin it ion of the dog classes i n the ANIMALS sample program, i ncludes
the color of a dog, as wel l as the breed and sound i t makes. M ethods i n the class
defin it ion f i le are grouped according to the type of function (for example,
GetMethods, SetMethods, DisplayMethods, System M ethodOverrides,
Ani mal MethodOverrides, parentOverrides) .

SOM ANIMALS Sample Program with Implied Metaclasses
The c lasses defined i n the ANIMALS program can be restructured to use i m pl i ed
metaclasses. This el i m inates the need for c lass definit ion f i les for the
An imaiFactory and DogFactory metaclasses. The source code for the ANIMALS
sample program with i m pl i ed metaclasses is not i ncluded i n the OS/2 2.0 Toolkit,
but is provided in F igure 7-43 on page 7-34 through F igure 7-51 on page 7-44

Chapter 7. Object-Oriented Programming Using SOM 7-33

Figure 7-43 (Part 1 of 2) . ANIMAL.CSC-ANIMALS with Implied Metaclasses

7·34 Appl ication Design Guide

Figure 7-43 (Part 2 of 2) . ANIMAL.CSC-ANIMALS with Implied Metaclasses

Figure · 7-44 (Part 1 of 3) . ANIMAL.C-ANIMALS with Implied Metaclasses

Chapter 7. Object-Oriented Programming Using SOM 7-35

Figure 7-44 (Part 2 of 3) . ANIMAL.C-ANIMALS with Implied Metaclasses

7-36 Application Design Guide

Figure 7-44 (Part 3 of 3) . ANIMAL.G-ANIMALS with Implied Metaclasses

Chapter 7. Object-Oriented Programming Using SOM 7-37

Figure 7-45 (Part 1 of 2) . DOG.CSC-ANIMALS with Implied Metaclasses

7-38 Application Design Guide

Figure 7-45 (Part 2 of 2) . DOG.CSG-ANIMALS with Implied Metac/asses

Figure 7-46 (Part 1 of 4) . DOG.G-ANIMALS with Implied Metac/asses

Chapter 7. Object-Oriented Programming Using SOM 7-39

Figure 7-46 (Part 2 of 4) . DOG.C-ANIMALS with Implied Metac/asses

7-40 Application Design Gu ide

Figure 7-46 (Part 3 of 4) . DOG.C-ANIMALS with Implied Metaclasses

Chapter 7. Object-Oriented Programming Using SOM 7-41

Figure 7-46 (Part 4 of 4) . DOG.C-ANIMALS with Implied Metaclasses

Figure 7-47. BDOG.CSC-ANIMALS with Implied Metaclasses

7-42 Application Design Guide

Figure 7-48. BDOG.C- ANIMALS with Implied Metaclasses

Figure 7-49. LDOG.CSC-ANIMALS with Implied Metaclasses

Figure 7-50. LDOG.C-ANIMALS with Implied Metaclasses

Chapter 7: Object-o-riented' Programming Using SOM 7-43

Figure 7-51 (Part 1 of 2) . MAIN.C-Ciient of ANIMALS with Implied Metaclasses

7-44 Appl ication Design Guide

Figure 7-51 (Part 2 of 2) . MAIN.G-Ciient of ANIMALS with Implied Metaclasses

Chapter 7. Object-Oriented Programming Using SOM 7-45

Summary

Table 7-10. Summary of SOM and Object-Oriented Programming Terminology

Term

O bject

Class

Class Object

I nstance Object

Method

I nstance · M ethod

Class M ethod

M etaclass

I m p l i ed M etacl ass

C l i ent Program

OIDL

Inheritance

Subclass

Polymorphism

M ethod Override

E ncapsulation

Definition

Set of data and actions that can be performed on that
data.

Generic description of sets of objects and the i r behavior.

Run-t ime i mplementation of a c lass.

An object belonging to a certa in c lass.

Actions that can · be performed on an object.

Actions that can be performed on i nstances of class
obj ects .

Actions that can be performed on c lass objects; also
known as factory methods.

Class of a class. Defi nes class methods for a class
object.

Subclass i ng m etaclass of parent class without separate
esc for resultant metaclass.

Appl ication that creates and manipulates i nstances of
c lasses.

Object I nterface Defin ition Language; specification
language for SOM class defi n itions.

I m p l ications of derivation of new classes from existi ng
classes. Chi ld c lasses i n herit methods of parent and
ancestor classes.

Ch i ld c lasses that define new behavior i n terms of new
m ethods not i nherited from parent and ancestor classes.

Different implementations of the same m ethod for two or
more classes.

Polymorphism i n SOM ; ch i ld c lasses can override the
implementation of m ethods i n herited from parent and
ancestor classes.

The private, or i nternal view, of an object that describes
how data and m ethods are actual ly implemented .

7-46 Application Design Guide

Chapter 8. Workplace Programming Interface

This chapter describes:

• CUA Guidel i nes for an Object-Oriented User I nterface
• The OS/2 2.0 Object-Oriented User I nterface: The Workplace
• The OS/2 2.0 Workplace Programm i ng I nterface

To establ ish a base defi nit ion of an object-oriented user i nterface, CUA guidel i nes
are h igh l ighted . The OS/2 Workplace Shel l is an object-oriented user envi ronment
based on these gu idel i nes. General object-oriented user i nterface concepts
descri bed i n CUA guidel i nes are then used to explai n the underlying design of the
Workplace Programm i ng I nterface. For com plete i nformation on CUA guidel i nes,
see Systems Application Architecture: Common User Access Guide to User
Interface Design i n the OS/2 2.0 Techn ical L ibrary.

Because Workplace objects are bui l t usi ng the IBM System Object Model (SOM) , the
OS/2 2.0 Workplace Programm i ng I nterface requi res a knowledge of SOM . This
chapter assumes a knowledge of object-or iented programm i ng and design concepts,
as wel l as SOM . For more i nformation on writ ing object-oriented programs using
SOM , see Chapter 7 , "Object-Oriented Programming Using SOM " on page 7-1 . For
reference i nformation on the Object Defi nit ion I nterface Language used to construct
SOM classes, the predefined SOM classes and methods, and the SOM compi ler, see
the System Object Model Guide and Reference in the OS/2 2.0 Technical Li brary.

So that you can develop your own Workplace objects, class definit ion f i les for
Workplace objects supported by the Shel l are provided with the Toolkit. For deta i led
descri ptions of Workplace classes and methods and the Workplace API , see the
Presentation Manager Programming Reference, Volume II in the OS/2 2.0 Technical
L ibrary.

CUA Guidelines for an Object-Oriented User Interface

© Copyright IBM Corp. 1992

Prior to 1 991 , CUA guidel i nes defi ned the user i nterface for application-oriented
envi ronments. I n appl ication-oriented envi ronments, such as OS/2 1 .X, the user
performs tasks by starti ng an appl ication. The user starts an app l ication by
selecti ng an i nstal led program from a l ist of programs displayed in a window or by
enteri ng the program name at a com mand-l i ne prompt. For example, the user can
start an editor to create and edit a file, start a spreadsheet app l ication to create and
update a spreadsheet, or can send a f i le to a pri nter to pri nt it .

In 1 991 , CUA gu ide l i nes defi ned the user i nterface for object-oriented
envi ronments. In object-oriented envi ronments, such as OS/2 2.0, the user performs
tasks by manipu lat ing onscreen objects. The user does not start an appl ication to
perform a task. I nstead, the user can:

• select an action, or task, that can be performed on an object. For example, the
user selects the open action on an ASCI I f i le object. The operating system then
starts an editor to work on the fi le .

• select the open action on a spreadsheet f i le . The operat ing system then starts a
spreadsheet appl ication to work on the f i le .

• drag the ASCI I f i le object to a pri nter object and drop i t on the printer object.
The f i le is then sent to the pri nter.

8-1

The concept of appl ications is transparent to the user. The user i nteracts with
objects rather than with the operat ing system or with separate appl ications. The
user focuses on the task and not on the tools used to perform the task. The user
i nteracts with objects in the same manner across tasks.

Objects, Classes, Hierarchies, and Inheritance

Views of Objects

An object is any visual component of the user i nterface with which the user can
work, i ndependent of other items, to perform a task. ' An object can be represented
by one or more graphic images, cal led icons. The user can i nteract with an object
(or its i con) j ust as the user can i nteract with objects i n the real world .

The user can also i nteract with an object by opening a wi ndow that displays more
i nformation about the object. The content of a wi ndow is a v iew of an object. A v iew
is a way of looki ng at an object's i nformation. Different views display i nformation i n
different forms, j ust as i nformation about a n object i s presented i n the real world . �
An object can have more than one view.

The appearance of a window's contents and the ki nds of i nteraction possib le in a
window are determi ned, i n part by the type of view presented i n the wi ndow. CUA
guidel i nes describe four basic types of views:

• Composed Views

A composed view of a data object arranges the object's data i n an order that
conveys the data's mean ing . If the data is arranged differently i n a composed
view, the object has a different mean ing . For example, a graph or chart object �

is typical ly displayed i n a composed view because the arrangement of the
components determi nes the mean ing of the object as a whole. If the
arrangement of the com ponents changes, the meani ng of the object changes.

• Contents Views

A contents v iew l ists the com ponents of an object. The com ponents can be
ordered or unordered in the v iew; the order of the i nformation displayed in a
contents view does not affect the mean ing of the object contai n ing the
i nformation. CUA gu idel i nes describe two ki nds of contents views:

Icons view

An icons view displays each object as an icon. Its purpose is to g ive the user
an easy way to change the position of objects or to otherwise d i rectly
manipu late them.

An object usual ly is represented by on ly one icon. However, for some tasks,
the user m ight fi nd it convenient to represent an object with more than one
icon. For example, the user m ight want a representation of a pri nter object i n
more than one place so that the user can have easy access t o the pri nter
from anywhere. The user can create an additional icon, known as a shadow,
to represent the same pri nter object.

Detai ls v iew

A detai ls v iew combines smal l icons with text that provides additional
i nformation about objects. The type of i nformation displayed depends on the
type of object and the type of tasks the user wants to perform . A detai ls view �

g ives the user access to some of the object's more frequently used
i nformation, without requi ri ng the user to open the object. Smal l i cons are
i ncl uded i n a detai ls view to provide a way for the user to easi ly recogn ize
objects and to di rectly manipu late each object.

8·2 Appl ication Design Guide

• Settings Views

A settings v iew displays i nformation about the characterist ics, attributes, or
properties of an object, and p rovides a way for the user to change the setti ngs of
some characteristics or properties. A settings v iew is typically provided for each
type of object.

• Help Views

Classes of Objects

A help view provides i nformation that can assist the user i n working with an
object. The type of i nformation d isp layed in a help view depends on the type of
help the user requests. For example, the user can request help for an enti re
window or for part of a window.

Objects can be c lassified by sim i larit ies in characteristics and behavior. Each class
of objects has a primary purpose that d ist inguishes it from other classes, and a l l
three types of objects can contain other objects. CUA guidel i nes def ine three object
c lasses:

• Container Objects

A container object holds other objects. Its primary purpose is to provide a way
for the user to g roup related objects for easy access and retr ieval .

• Data Objects

Data objects convey i nformation, such as text or g raphics, audio or video
i nformation.

• Device Objects

A device object often represents a physical object i n the real world . For
example, a mouse object can represent the user's pointi ng device, and a modem
object can represent the user's modem. Some device objects represent a logical
object in the user's computer system rather than a physical object. For example,
a shredder object can represent a logical object that disposes of the user's other
objects. Some device objects can contain other objects. For example, a pri nter
object can contain a queue of objects to be pr inted.

Object Relationships
An object c lass can be def ined i n terms of another object class. It can be derived
from another c lass, i nherit ing the same characterist ics and behavior of the other
class, yet having characterist ics and behavior of i ts own. The class that it is derived
from is cal l ed its parent class; the class itself is referred to as a subclass of its
parent class.

The i nheritance relationshi p between objects is h ierarchical . An object that is lower
in the i nheritance h ierarchy than another obj ect has al l of the characteristics of the
object or objects above it and can have new characteristics of its own.

Other object rel at ionships can also be hierarchical . For example, obj ects can be
arranged in a conta inment h ierarchy that i l lustrates which objects can contain which
other objects.

Chapter 8. Workplace Programming Interface 8-3

Interaction with Objects
I n an object-oriented user envi ronment, users i nteract with objects to perform tasks.
The object-action parad igm is a pattern for i nteraction i n which the user f i rst selects
an object, then selects an action. When the user selects an object, the system can
then present a l i st of actions that can be appl i ed to that object. Some actions may
requ i re the user to respond to additional choices. I nteraction with an object through
choices and controls is known as indirect manipulation.

At any given ti me an object has a set of actions that can be performed on it.
Different objects have d ifferent actions that can be performed on them. Action
choices for an object are displayed in pop-up menus that appear next to an object
when the user presses the appropriate key or mouse button. The content of a
pop-up menu is based on the object's context, which i ncl udes its current state, its
location, and i ts contents.

Users may also i nteract with objects by way of a pointi ng device. This is known as
direct manipulation. This i nteraction technique closely resembles the way the user �
i nteracts with objects i n the real world . For example, the user can pick up an object
and put it i nto a folder. This is also known as dragging an object from one place and
dropping i t at another place.

"Drag and d rop" often i nvolves a source object and a target object. A source object
is usual ly the object the user is worki ng with, and a target object is usual ly an object
to which the user is transferri ng i nformation; for example, if the user drags a fi le
object to a pri nter object so that the f i le can be pri nted. The f i le is the source object
and the pri nter is the target object.

The result of "drag and d rop" can change depend ing on what the source object is
and what the target object is . For exam ple, if the user drags a fi l e obj ect from one
folder object and drops it on another, the fi l e is moved to the target folder.
However, if the user drops the same fi le onto a pri nter, the operati ng system makes
a copy of the fi l e and puts the copy i nto the pri nter's queue to be pri nted . The
orig i nal fi l e is returned to its orig i nal location.

Designing an Object-Oriented User Interface
The fol lowi ng items are key i n des ign ing an object-oriented user i nterface:

• Objects and thei r relationshi ps
• Visual representations of objects
• I nteraction Techniques and Mechanisms

Objects and thei r relationshi p can be defi ned by answering the fol lowi ng questions:

• What objects does the user requ i re?
• How are the objects related?
• What propert ies and behaviors should the objects have?

To i l l ustrate thei r i mportance, consider the example of the design of a software
model of a car dealershi p. A salesperson needs a car object to represent each car
model on h is lot. He also needs a customer object to represent each customer that
purchases a car. He needs a worksheet object to track sales, profits, i nventory,
customers, and so on. Fi nal ly, he needs contai ner objects to group these objects.

8-4 Appl ication Design Gu ide

The visual representations of objects m ust ensure consistency with one another and
with the operating system . Visual representations of objects should address the
functional aspects of visual representations, such as usab i l ity and purpose: Does
the visual convey the purpose of the object being represented? Visual
representations should also address the aesthetic aspects, such as shape, size, and
color: Is the representation visual ly pleasing?

Users should i nteract with s im i lar objects in si m i lar ways and in ways that seem
natural . Users should also have a choice of i nteraction mechanisms that suits thei r
tasks, thei r l evel of ski ll , and thei r preferred style of i nteraction. I n the car
dealershi p example, a salesperson must be able to p lace i nformation i nto a
worksheet object in any of several ways. The salesperson can place a car object on
top of the worksheet object, thereby transferri ng i nformation about the car to the
worksheet; or the salesperson can type i nformation d i rectly i nto the worksheet
object; or the salesperson can select portions of i nformation from the car object and
copy them to the worksheet object.

Defining the Objects for a Software Model
In order to design a software model that serves the needs of the users, the above is
translated i nto:

• Who are the users?
• What tasks do they perform?

I n the car dealershi p example, the salesperson is the user. The user's tasks can
i nclude:

• Determ in i ng what a customer wants, needs, and can afford
• Determ in i ng what cars are i n stock that match the customer's wants, needs, and

budget
• Negotiati ng an agreement usi ng a worksheet
• Gett ing approval from the sales manager
• G iving the worksheet i nformation to the f i nance manager

From this analysis, identify the objects that shou ld be part of our software model can
be identified. These i nclude: a car object, a car lot object, a customer object, a
customer l ist object, a worksheet object, a worksheet l ist object, a salesperson
object, a sales manager object, and a f i nance manager object.

To sim pl ify this d iscussion, consider the car object only. Each car object represents
a real car for sale i n the car lot. A car object contai ns descriptive i nformation about
the corresponding real car, such as i ts year, make, model , price, factory-i nsta l led
options, color, and vehic le identification number. Because the pri mary purpose of a
car object is to convey i nformation, the car object is a data object.

Determining Object Relationships and Behaviors
The next step i n the design of a software model is to determ i ne how each object
i nteracts with other objects. In the car dealershi p, i nformation contained i n car
objects m ust be transferable to a worksheet object. The user should have the option
to drag a car object and d rop it onto a worksheet object. The user should also have
the option to choose an action to copy the i nformation from a car object to a
worksheet obj ect.

Chapter 8. Workplace Programming Interface 8-5

Determining the Necessary Views
After identify ing and defin ing the objects, consider what v iews of the car object w i l l
g ive the user (salesperson) the best access to the objects and the i nformation they
conta in . Car i nformation consists of a combination of text (model , year, and so
forth) and g raphic i nformation (a picture of a car) that make up a s ing le , General
I nformation View.

Determining the Action Choices
From a salesperson's perspective, most of the i nformation about a car object is
fixed-that is, the i nformation is based on a real-world object and cannot be changed
un less something changes about the real-world object. For example, it would not
make sense to al low a salesperson to change the color of a car object to correspond
to the color of the actual car he is try ing to sel l . Because a salesperson can change
l ittl e about a car object, the car object has only a few action choices:

• Open as general i nformation
• Pr int
• Edit
• Copy to c l i pboard
• Find
• Windows

The OS/2 Object-Oriented User Interface: The Workplace Shell

I n OS/2 1 .X, the Desktop is a col lection of wi ndows or icons represent ing wi ndows
associated with appl ications. I n OS/2 2.0, the Desktop is a col lection of objects
(icons) and windows associated with those objects. The Desktop (which is also an /�

object) , the objects that appear on the Desktop, and the underlyi ng code supporti ng
these objects constitute the OS/2 Workplace Shel l , the default user i nterface for
OS/2 2.0.

The OS/2 Workplace Shel l provides an object-oriented user envi ronment that is
based on the 1 991 CUA guidel i nes. It provides a seamless envi ronment, where a l l
services are task-oriented and the user is shielded from the complexities of the
operati ng system . The user can perform tasks faster and easier and with a shorter
learn ing curve.

In the OS/2 Workplace, the Shel l appl ications from OS/2 1 .X are replaced by objects
and col lections of objects, or folders. Users do not have to be aware of where an
object is (which drive or network) or what it is cal led. They can place an object
wherever they wish and cal l it by any name. They do not have to know about EXEs,
DLLs, device drivers, or how to add a pri nter or use a network. If they want to print
a report on the laser pri nter down the hal l , they can si m ply d rag the icon
representi ng the report and d rop it onto the icon represent ing the laser pri nter
which is label led " Laser pri nter down the hal l . "

Users act o n a l l objects i n a consistent manner. They can act o n program f i les i n
the same manner as program references. There is n o d ifference i n usi ng programs
on a network server or on a hard disk or on a CD drive. There is no difference i n
sett ing up or pri nti ng to a local o r remote pri nter.

8·6 Application Design Guide

I n the OS/2 Workplace, user's are not aware of the fi l e system . They need not know
anythi ng about disk d rives or d i rectories. They need only know about folders and
the objects they put i nto them. They can put appl ications, f i les, and so forth, in a
folder. They can arrange thi ngs, regardless of where they physical ly reside, to suit
themselves and thei r own needs. And they can label the folders by any name.

My Newsletter Compos i t i on Fol der

D D
My Text Edi tor My Graph i cs Edi tor

D
My Layout Program

Figure 8-1 . Objects in a Folder

D D
My Fi nal Copy My Pri nter

Some of the objects that the OS/2 Workplace provides are descri bed in Table 8-1 .
After i nsta l lation of OS/2 2.0, some of them appear d i rectly on the Desktop. Some of
them are contai ned i n folders. Users can rearrange and relabel them to suit
themselves.

Table 8-1 . Some Workplace Objects Provided by OS/2 2.0

Object

Clock

Country

Keyboard

M ouse

Scheme Palette

Font Palette

Color Palette

Pri nter

Shredder

Sound

Special Needs

Spooler

System

Description

Set and view the current date, t ime, and alarm.

Set and view i nternational conventions for system
elements (cou ntry, date, t ime, n u m bers) .

Set and view keyboard configuration (ti m i ng, mappings,
special needs) .

Set and view behavior of mouse device (ti m i ng, setup,
button mapp i ngs) .

Set and view wi ndow color and font attri butes .

Set and view fonts for textual elements of user i nterface
and apply fonts to wi ndows.

Set and view colors for visual e lements of user i nterface
and apply color to a wi ndow.

Set and view a pr int destination (a print queue and its
associated port.

Destroy an object.

Enable/d isable warn i n g beep.

Expla i n i m pl ications of special needs mode when
activated .

Enable/d isable spool i n g . Set and view spool path .

Set and v iew behavior of system elements
(confi rmations, l ogo, wi ndows).

Chapter 8. Workplace Programming Interface 8-7

The OS/2 2.0 Workplace Programming Interface

While object-or iented user i nterfaces share some concepts with object-oriented
programm i ng , user objects may not necessari ly correspond to software objects.
Object-oriented programming can make the development of an object-oriented user
i nterface easier. However, an object-oriented user i nterface can be developed with
more traditional programm i ng languages and tools.

The OS/2 2.0 Workplace is an example of a user i nterface developed usi ng
object-oriented programm i ng , specifical ly , the IBM System Object Mode l . I n fact,
every user object in the OS/2 2.0 Workplace is an i nstance of a Workplace software
class object. There is a one-to-one correspondence between Workplace (user)
objects and Workplace (software) classes. This is evident i n the class h ierarchy for
Workplace objects, as; shown in F igure 8-2.

SOMObj ect r SOMCl ass

L SOMClassMgr
WPObj ect

L WPAbstract [WPFi l eSystem
WPDataFi l e

[WPTran s i ent
WPCl ock
WPCountry
WPD i sk
WPKeyboard
WPMouse
WPPal ette

E WPJob
WPPort
WPPri nterDri ver
WPQueueDri ver

WPFol der

E WPDes ktop
WPDri ves
WPStartup
WPTempl ateFol der t WPCol orPal ette

WPFontPal ette
WPSchemePal ette

WPProgram
WPShadow
WPShredder
WPSound
WPSpeci al Needs
WPSpool er
WPSystem

WPProgramFi l e

Figure 8-2. Workplace Object Class Hierarchy

Al l OS/2 2.0 Workplace classes are derived from a root Workplace class, WPObj ect, �
which is derived from the root SOM class, SOMObject. Workplace classes are
defined using SOM's Object I nterface Defi n it ion language (OI DL) . Workplace class
l i braries are bui l t usi ng the SOM compi ler. Workplace objects are i nstantiated by
the Workplace on behalf of the user through the Workplace Class list Object,
i nsta l lat ion programs, or batch f i les. The same rules that apply to SOM classes
apply to Workplace classes, with the exception that app l ications cannot cal l
Workplace methods. (SOM c l ient app l ications can cal l SOM methods.)

Some Workplace classes (WPObject, WPAbstract, WPFi leSystem, WPTransient)
cannot be i nstantiated. These classes are provided as base classes which defi ne
com mon characteristics and behavior for descendant classes. Object
characteristics and behavior are defined as methods for the object's class, as wel l
as methods i nherited from ancestor classes.

8-8 Application Design Guide

WPObject is the root class for a l l Workplace classes: it defi nes behavior common to
a l l Workplace objects. The immediate descendants of WPObject are storage
classes, from which al l other Workplace classes are derived. Storage classes
define methods for stori ng and retrievi ng data associated with i nstances of
descendant classes. Storage classes provided with the OS/2 2.0 Workplace are
shown in Table 8-2.

Table 8-2. Workplace Storage Classes

Class Storage of Object Instance Data

WPAbstract Object i nstance data stored i n user profi l e (OS2 . 1 N I) .

WPFi leSystem Object i nstance data stored i n f i les in the f i le syste m .

WPTransient Object i nstance data not saved .

Objects whose i nstance data and state is preserved between system shutdown and
system startup are cal led persistent objects. Objects whose i nstance data and state
need not be preserved between system shutdown and system startup are cal led
non-persistent objects.

Designing Workplace Classes
To design a Workplace class, fi rst identify a l l the actions to which an object i nstance
can respond. Based on this l i st, def ine the methods in the class definit ion f i le that
correspond to the actions that were identif ied. To i l l ustrate this process and
understand how method requ i rements for a class are identified , consider the
WPObject and WPAbstract classes.

Based on the general description of user objects in a CUA-conforming user
envi ronment, objects have:

• Properties (for example, an icon representation on the Workplace)
• Views that contai n i nformation about the object
• Context, or pop-up, menus that describe actions to which the object can respond
• Mobi l ity (they can be d i rectly manipu lated)

These characteristics and behaviors should be reflected i n the methods in the class
defi nit ion f i le for the WPObject class. Table 8-3 shows the mappi ng of
characteristics and behaviors common to al l Workplace objects to method g roups
defined for this class.

Table 8-3. Defining Methods for the WPObject Class

Method Group

Sett ings-Notebook Methods

Save/Restore State M ethods

Object Usage M ethods

Pop-up Menu M ethods

Set/Query Object I nformation M ethods

E rror Hand l i ng M ethods

Memory M anagement M ethods

Set/Cleanup M ethods

D i rect Man i pu l ation M ethods

Characteristic/Behavior

Properties

Persistence of Object I nstance Data

Object Usage I nformation

Actions that users can perform on objects

Object i nformation (views, style, title)

Error Returns

Memory Al location

I n itial ization and Term i nation

Mobi l ity

Chapter 8. Workplace Programming Interface 8·9

I n Tabl e 8-3, there are Method G roups i n the WPObject class definit ion that support
general object characteristics and behaviors that are i ncluded in the l ist above. �
There are also Method G roups i n the WPObject c lass definit ion that support object
characteristics and behaviors that are not i ncluded i n the l ist.

SeHings-Notebook Methods
The WPObject class provides for a standard page in a Workplace object's Setti ngs
Notebook: a General page. This page describes all the general object properties
(tit le, icon, and a user-definable sett ing to specify whether or not this object is a
template). A l l Workplace objects have general p roperties associated with them;
therefore, a l l Workplace objects have a General page in thei r Setti ngs Notebook.
Settings Notebook pages for Workplace objects are i nherited from the ancestors of
the Workplace class. This means that they i nclude pages that have been added or
removed by ancestor classes, i n addit ion to the General page i nherited from the
root WPObject class.

For example, suppose that MyObject is a persistent object derived from the
WPAbstract class. Because WPAbstract is derived from the WPObject class,
MyObject i nherits characteristics and behaviors from WPAbstract and WPObject.
WPAbstract i nherits i ts Setti ngs Notebook from WPObject. MyObject, therefore, also
inherits WPObject's Setti ngs Notebook. WPObject def ines a General page in the
Setti ngs Notebook for all classes of objects. Also, suppose that MyObject c lass
defines two addit ional pages i n i ts Setti ngs Notebook: MyPage_1 and MyPage_2.
That is , the Setti ngs Notebook for the MyObject class has three pages: General ,
MyPage_1 and MyPage_2. Now suppose that YourObject class is derived from
MyObject class and, therefore, by i nheritance, defi nes a General page, as wel l as
MyPage_1 and MyPage_2 in i ts Setti ngs Notebook. Also suppose that YourObject
class defines an additional page i n i ts Setti ngs Notebook: You rPage. The Setti ngs
Notebook for You rObject Class has four pages: General (i nherited from the
WPObject c lass) , MyPage_1 , MyPage_2 (i nheri ted from MyObject c lass) , and
YourPage. The pages in the Setti ngs Notebooks for MyObject and YourObject are
shown in F igure 8-3.

MyObj ect Sett i ngs YourObj ect Setti ngs

General I
Thi s page i s not
i nheri ted from MyPage_l J
MyObj ect ' s ancestors .

Thi s page i s not
i nheri ted from
YourObj ect ' s

MyPage_2 J ancestors .

Figure 8-3. Adding Pages to an Object's Settings Notebook

General I
MyPage_l I
MyPage_2 I
YourPage I

The Sett ings-Notebook methods, as shown i n Table 8-4 on page 8-1 1 , al low you to
add new pages or remove pages that a class has i nheri ted from its ancestor's
Setti ngs Notebook.

8-1 0 Application Design Guide

Table 8-4. Settings Notebook Methods

Method Description

wpAddObjectGeneraiPage Add the General page to the object's
settings notebook.

wpAddSetti ngsPages Adds pages to the object's settings
notebook.

wplnsertSettingsPage I nsert a page i nto the object's setti ngs
notebook.

An object's Setti ngs Notebook is bui l t by the Shel l by cal l i ng the object's
wpAddSett ingsPages method. To add pages pages to the setti ngs notebook that a
class i nherits from its ancestors, override this method.

Adding pages to the Setti ngs Notebook a class has i nherited from its ancestors is
accompl ished by overrid ing the wpAddSetti ngsPages method and cal l i ng a new
method that i nserts the new page. The new method cal ls the wplnsertSetti ngsPage
method to i nsert the new page i nto the object's notebook. This technique is shown
in Figure 8-4.

Figure 8-4. Adding Pages to an Object's Settings Notebook

New pages for an object's Settings Notebook can be placed at the top or at the
bottom of pages i nherited from the object's ancestor classes. By cal l i ng the
parent_wpAddSett ingsPage method before cal l i ng the new wpAddAnotherPage
method, the new page is added to the top of the Setti ngs Notebook, above pages
i nherited from ancestor classes. If the sequence is reversed, the new page is added
to the bottom of the Sett ings Notebook, below pages inherited from ancestor
classes.

Chapter 8. Workplace Programming Interface 8-1 1

A page can be removed from an object's Setti ngs Notebook by overrid ing the
ancestor's method that i nserts it . From the previous example, the Setti ngs �
Notebook for YourObj ect class i nherits the pages (Genera l , MyPage_1 , and
MyPage_2) defi ned by i ts ancestors (MyObject and WPObject) . But YourObject class
may have requ i rements for MyPage_1 , but not MyPage_2. To remove MyPage_2
from You rObject's Setti ngs Notebook, YourObject m ust override the method
i nherited from MyObject that adds MyPage_2 to the Setti ngs Notebook and return
SETIINGS_PAGE_REMOVED without cal l i ng the parent method. This is i l l ustrated
in F igure 8-5.

Figure 8-5. Removing a Page from an Object's Settings Notebook

The same technique can be used to replace or remove the General page from an
object 's Setti ngs Notebook by overrid ing both the wpAddSetti ngsPages and
wpAddObjectGeneraiPage methods. The override to wpAddSetti ngsPages cal ls the
wpAddObjectGeneraiPage method. To remove the General page, the override to
wpAddObjectGeneraiPage returns SETIINGS_PAGE_REMOVED without cal l i ng the
parent method. To rep lace the General page with another page, the override to
wpAddObjectGeneraiPage cal ls wplnsertSetti ngsPage without cal l i ng the parent
method.

Pop-Up Menus
Pop-up menu methods support the actions that the user can perform on an object.
These actions appear i n a context, or pop-up menu, when the user presses button 2
of the pointi ng device. A pop-up menu contai ns action choices for an object i n its
current context, or state. The contents of a pop-up menu depends on the state of the
object.

Pop-up menus consist of a set of selectable items and any pul l-down, or conditional
cascade, menus associated with them. In F igure 8-6, Open, Help and Print are
items in the object's pri mary pop-up menu. SeHings and Details are items in the
Open pul l -down or condit ional cascade menu. Conditional cascade menus have
m in i-push buttons displayed next to the pop-up menu item. If the user selects the
pop-up menu item , a default action l i sted in the pul l -down menu is performed. If the
user selects the m in i-pushbutton, the pul l -down menu is d isplayed. It is a
condit ional cascade menu because it is d isplayed only if the user selects the
m i ni-push button.

Open (->) x Setti ngs

Hel p Detai l s

Pri nt (->)

Figure 8-6. Pop-Up and Conditional Cascade Menus

8-1 2 Application Design Guide

Like Setti ngs Notebook pages, pop-up menus are i nherited from a class's ancestor
classes. This means that they i nclude pop-up menu items that ancest()r c lasses
have added to or removed from the pop-up menu i nherited from WPObject. The
Pop-up Methods, as shown i n Table 8-5, al l ow you to add new menu items to or
remove menu items from the pop-up menu i nherited from an object's ancestor
classes.

Table 8-5. Pop-Up Menu Methods to Modify an Object's Pop-up Menu

Method Description

wpFi lterPopupMenu Fi l ter out options from object's pop-up menu that don't
apply.

wplnsertPopupMenultems I nsert Items i nto object's pop-up menu.

wpModifyPopupMenu Add new options to the object's pop-up menu.

When a us.er requests an object's pop-up menu, the Shel l bu i lds the object's pop-up
menu by cal l i ng the object's wpFi lterPop.upMenu and wpModifyPopupMenu
methods. The wplnsertPopupMenultems method is called by an override to the
wpModifyPopupMenu method to add new options to an object's pop-up menu.

Adding and Removing Items from a Pop-Up Menu: The WPObject class defines a.
set of standard pop-up menu items that are i nherited by a l l Workplace objects. The
pop-up menu of a Workplace object consists of a subset of the standard pop-up
menu items and any new menu items defined for the object's class or i nherited from
other ancestors.

Workplace classes can add or delete standard pop-up menu items from their pop-up
menu by overrid i ng the wpFi lterPopupMenu method. Each standard pop-up menu
item is associ ated with a f lag defi ned by the WPObject class, as shown i n Table 8-6.

Table 8-6. Flags for Standard Pop-Up Menu Items Inherited from WPObject

Menu Item Flag

CTXT_CREATEANOTHE R

CTXT_OPEN

CTXT_CLOSE

CTXT _SETTINGS

CTXT_PR I NT
-

CTXT_HE LP

CTXT_DELETE

CTXT_COPY

CTXT_MOVE

CTXT _SHADOW

CTXT WINDOW

Description

Create another

Open

Close

Open settings

Pr int

Help

Delete

Copy

Move

Create Shadow

Window

Chapter 11. Workplace Programmmg. lnterfilce · 8-13

i

The wpFi lterPopupMenu method returns the flags that represent the pop-up menu
items for the object. I n removing a standard pop-up menu i tem from the pop-up �

menu, the override to wpFi lterPopupMenu masks the flag that corresponds to the
item bei ng removed from the flags that represent the standard pop-up menu items
i nherited from the object's parent. For example, suppose that pri nti ng MyObject has
no meani ng. To remove the Print option from MyObject's pop-up menu,
wpFi lterPopupMenu is overridden as shown in F igure 8-7.

Figure 8-7. Removing Standard Items from an Object's Pop-Up Menu

In F igure 8-7, flags that represent the standard pop-up menu items of MyObject's
parent class are returned from the cal l to parent_wpFi lterPopupMenu. To remove
the Print option from MyObject's pop-up menu, these flags are AND'd with the
complement of CTXT_PRINT. Conversely, if the pop-up menu of MyObject's parent
class did not i nclude the Print option, the Print option can be added to MyObject's
pop-up menu by OR' i ng these flags with CTXT_PRINT.

Usage Note ---------------------------,

An object's pop-up menu is i nherited from its ancestors. To ensure that cal ls to
the wpFi lterPopupMenu method belongi ng to the object's ancestors do not add
the menu item after i t is deleted or remove the menu item after i t is added, the �

parent_wpFi lterPopupMenu method is cal led f i rst.

Other Workplace classes provided with the Shel l defi ne standard pop-up menu
items for thei r descendants. F igure 8-8 l ists the flags associated with these
add itional standard pop-up menu items.

WPFol der

CTXT_I CON
CTXT_TREE
CTXT_DETAI LS
CTXT F I ND
CTXT_S ELECT
CTXT ARRANGE
CTXT_SORT

WPDesktop

CTXT_SHUTDOWN
CTXT_LOCKUP

WPProgram WPPal ette

CTXT_PROGRAM CTXT PALETTE

Figure 8-8. Flags for Standard Pop-Up Menu Items Defined by Other Workplace Classes

8-1 4 Appl ication Design Guide

These items are added by the respective classes using the wpModifyPopupMenu
method. Any override to wpMod ifyPopupMenu m ust cal l the parent method so that
these items are added to the pop-up menu i nherited from ancestor classes.

Adding Class-Specific Items to the Primary Pop-Up Menu: New items are added to
the pop-up menu i nherited from an object's ancestors by overrid ing the object's
wpModifyPopupMenu method and cal l i ng the wplnsertPopupMenultems method .
The object's class also defi nes a new Fi l terPopupMenu method that returns flags
representi ng the new items added to the object's pop-up menu.

For example , to add New Item to MyObject's pop-up menu, the new menu i tem is
defi ned i n a resource f i le i n the same manner as menus are defi ned i n PM
programs. An I D is ass igned to the new menu and to the menu item , as shown i n
F igure 8-9.

Figure 8-9. Resource File Defining New Items for Object's Pop-Up Menu

I Ds for class-specific menus and menu items have a val ue greater than
WPMENUID_USER so they do not confl ict with I Ds for menus and menu items
defi ned by the Workplace classes provided with the Shel l . I Ds for standard items i n
a n object's pop-up menu are shown i n F igure 8-1 0.

WPObject

WPMENU ID_OPEN
WPMENUID_HELP
WPMENU I D_PRINT

WPFol der

WPMENUID_SELECT
WPMENUID_SORT

Figure 8-10. IDs for Standard Items in a Pop-Up Menu

A new method for MyObject class, wpMyFi lterPopupMenu, returns flags (in th is
case, a f lag) that represent the new items added to the i nherited pop-up menu for
the MyObject class. The override to wpModifyPopupMenu uses the flags returned
from wpMyFi lterPopupMenu to determ i ne which items are i nserted i n MyObject's
pop-up menu. This is i l l ustrated i n F igure 8-1 1 on page 8-16 .

Chapter 8 . Workplace Programming Interface 8·1 5

Figure 8-1 1 . Adding Class-Specific Items to an Object's Pop-Up Menu

The wplnsertPopupMenultems method requ i res a hand le to the module where the
menu resource is defi ned, the ID for the menu resource, and the ID for the menu
where the item is bei ng i nserted. I n the above example, I D_MOREITEMS is the ID �

for the menu resource that defi nes the new menu item bei ng added to the object's
primary pop-up menu. WPMENUID_PRI MARY is the ID for the obj ect's pr imary
pop-up menu, where New Items is bei ng i nserted.

An item can be added to a pop-up menu submenu, or conditional cascaded menu by
specify ing the ID for the condit ional cascaded menu on the cal l to the
wplnsertPopupMenultems method. For example, to add New Items to the Open

conditional cascaded menu, the cal l to wplnsertPopupMenultems is modified as
shown i n F igure 8-1 2 .

Figure 8-12. Adding an Item to a Pop-Up Menu Submenu

8-16 Appl ication Design Guide

Removing Class-Specific Items from an Object's Pop-Up Menu: Class-specific
pop-up menu items i nherited from ancestor classes are removed by overrid ing the
fi lteri ng methods that return f lags that represent those items. For example, suppose
MyObject is the parent class of YourObject, but You rObj ect has no requi rement for
the New Hem in the pop-up menu it i nherits from MyObj ect. To remove New Item
from YourObject's pop-up menu, You rObject's class overrides
wpMyFi lterPopupMenu method and does not return the MYCTXT_NEWITEM flag
MyObject defi ned for New Item. This techn ique , as shown in F igure 8-1 3 is si m i l ar
to that descri bed for removing standard items from an object's context menu. It
requ i res that MyObject publ ish wpMyFi lterPopupMenu m ethod, as wel l as the
MYCTXT _NEWITEM flag so that subclasses of MyObject can remove or add New
Item.

Figure 8-13. Removing Class-specific Items from a Pop-Up Menu

Adding Conditional Cascaded Menus to the Primary Pop-Up Menu: Items on an
object's pop-up menu someti mes have pu l ldown menus or submenus associated
with them. In the Workplace, pop-up submenus are condit ional cascaded menus,
as shown in Figure 8-1 4.

Open (->)

Hel p

Pri nt

New I tem (->) Subl tem_l

Subl tem_2

Subl tem_3

Figure 8-14. Conditional Cascaded Menus

I n the previous example, New Item is not a pu l ldown menu. However, New Item can
be defined as a pu l ldown menu by defi n ing it as a submenu in MyObject's resou rce
f i l e, as shown in F igure 8-1 5 on page 8-1 8.

Chapter 8. Workplace Programming Interface 8-1 7

Figure 8-15. Resource File Defining Pul/down for Object's Pop-Up Menu

The New Item submenu is added to MyObject's p ri mary pop-up menu using the
same technique as shown in F igure 8-1 1 on page 8-1 6. For the Shel l to display the
submenu as a condit ional cascade menu with the m i n i-push button and default
select ion, the menu's style and default selection m ust be set, as shown i n
Figure 8-1 6.

Figure 8-16. Creating a Conditional Cascaded Menu for a Pop-Up Menu Item

8-1 8 Appl ication Design Guide

Supporting User Selection of New Pop-Up Menu Items: When a class defi nes new
actions for its pop-up menu, i t m ust provide for the processing of the actions when
the user selects the act ion. This is done by overrid ing the Pop-Up Menu M ethods
shown i n Table 8-7.

Table 8-7. Pop-Up Menu Methods that Support New Pop-Up Menu Items

Method Description

wpMenultemHelpSelected Display the help associated with class-specific pop-up
menu ite m .

wpMenultemSelected Process c lass-specific pop-up menu item.

Using the previous example, MyObject supports Subltem_1 by overrid i ng the
wpMenultemSelected method as shown in F igure 8-17 .

Figure 8-1 7. Supporting User Selection of New Pop-Up Menu Items

MyObject can support help for new pop-up menu i tems by overrid ing the
wpMenultemHelpSelected method in a s im i l ar manner.

Chapter 8. Workplace Programming Interface 8-1 9

Support for User Selection of Standard Pop-Up Menu Items: When the user selects
a standard action from a pop-up menu, the Shel l cal ls one of the Pop-Up Menu �

methods shown i n Table 8-8.

Table 8-8. Pop-Up Menu Methods Supporting Standard Pop-Up Menu Items

Method Description
wpCiose Close a l l open views of an object.

wpCopyObject Create a new copy of the object.

wpCreateFromTemplate Create an object from a template.

wpCreateShadowObject Create a shadow of an object.

wpDelete Delete an object and prompt for confi rmation if
necessary.

wpDisplayHelp Display a help panel .

wpHide Hide or m i n i m ize open views of an object.

wpRestore Restore h idden or m i n i m ized views of an object.

wpMoveObject M ove the object to a different location.

wpOpen Open a view of the object.

wpPri ntObject Pr int a view of the object.

Open Views: Obj ects can have Open Actions or Open Views associated with them.
Open Views are typical ly the views of an object (for example, i con, detai ls , and
setti ngs) . Open Views (for data fi le objects) also i ncl ude programs or program
references that the user has associated with the object. Open Views are displayed �
when the user selects the cascade m i ni-push button that appears next to the Open
action on the pop-up menu. The user can then select the default Open View or any
of the Open Views that are l isted i n the conditional cascade menu.

The Workplace defi nes a set of predefi ned Open Views for Workplace objects, as
shown i n Table 8-9. Some of the predefi ned Open Views are meani ngfu l only to
certa in Workplace classes: OPEN_RUNNING is meani ngful only to a program or
program reference object; OPEN_ TREE is meani ngful on ly to f i le system objects
such as folders, drives and d i rector ies.

Table 8-9. Predefined Open Views for Workplace Objects

View Description

OPEN_ CONTENTS Open content view.

OPEN_DEFAULT Open default view.

OPEN DETAILS Open detai ls view.

OPEN_HELP Open help view.

OPEN_RUNNING Execute object.

OPEN_ SETTINGS Open setti ngs notebook.

OPEN_TREE Open tree view.

OPEN_ USER Open class-specific view {value g reater than
OPEN_USER)

8-20 Application Design Guide

Workplace classes can def ine new Open Views for thei r objects by:

1 . Addi ng the New View menu item to the Open submenu.

2. Overrid ing the wpMenultemSelected method to support user selection of the
New VIew menu item .

3. Overrid i ng the wpOpen method to open the New View.

4. Creating and opening a standard wi ndow for the New View by cal l i ng
Wi nCreateStdWi ndow.

Note: The preferred method for displaying app l ication views of an object is for
the object to start a separate process (using DosExecPgm) for the app l ication.
This approach moves the larger part of the appl ication code out of the Shell 's
process, thus conserving the Shel l 's resources. It also hel ps prevent a
m isbehaved appl ication from potent ia l ly i nterferi ng with the execution of the
Shel l .

5 . Addi ng a USAGE_ VIEW item to the object's i n-use l ist by cal l i ng the
wpAddToObjUselist method.

6. Register ing the New View by cal l i ng the wpRegisterView method.

The CAR Sample Workplace Object in the Tool kit demonstrates how to defi ne and
open a new Open View.

Object Shadows: A shadow of an object is an object that refers to another object's
data. A shadow object can often appear to be a copy of the object that it refers to.
However, it is not a copy but another representation of the object. This means that
when data i n a shadow object is changed, the same data is changed i n the orig i nal
object and all references to it. This is in contrast to a copy of an object, such as a
data f i le , where the data i n the copy can be changed and not affect the orig i na l .

Some objects cannot be copied and on ly a shadow can be created i n order to have
that object reside in multi p le folders. These typical ly are device objects. For
example, because there is only one physical mouse device in the system, there
cannot be two d ifferent mouse objects.

A shadow is created by the user by d i rect manipu lation (hold ing CTRL and SHIFT
keys down whi le draggi ng/dropping the object) or by select ing the Create Shadow

on the pop-up menu. I n both cases, the Shel l responds by cal l i ng the object's
wpCreateShadowObject method.

Helps for Objects: Help for Workplace objects is provided in the same manner as
for PM appl ications usi ng the I nformation Presentation Faci l i ty (IPF). Hel p
i nstances are created for and associated with objects by the Shel l . Hel p panels for
windows and wi ndow controls are created using the IPF tag language and comp i led
by the IPF compi ler i nto a Help Li brary. The Hel p L ibrary is placed i n the systems's
\052\HELP d i rectory or i n another d i rectory in the L IBPATH. Hel p panels are
associated with windows and wi ndow controls by help tables defi ned in the object's
resource f i le . See the Information Presentation Facility Guide and Reference in the
OS/2 2.0 Technical L ibrary for for more i nformation on creat ing Hel p panels and
Hel p l i braries.

Hel p for Workplace objects is supported by the object's wpDisplayHelp ,
wpQueryDefaultHelp and wpMenultemHelpSelected methods. The
wpQueryDefaultHel p and wpMenultemHel pSelected methods are overridden to
support class-specific views and menu items.

Chapter 8. Workplace Programming Interface 8-21

Object Information Methods
Object I nformation Methods a l low you to set and query i nformation (default help and
view, detai ls , i con and icon, style, and title) associated with an object. The methods
in this g roup set and query object i nformation as shown in Table 8-1 0.

Table 8-10. Object Information Methods

Methods Operate on

wpSet/wpQueryDefaultHel p Default h e l p panel for object

wpSet/wpQueryDefaultView Default view for object

wpQueryDetai Is Data Current detai ls data for object

wpSet/wpQuerylcon Current icon for an object

wpSet/wpQuerylconData Current icon and icon data for an object

wpSet/wpQueryStyl e Current style o f an object

wpSet/wpQueryTitle Current title of an object

Object Styles: Just as PM wi ndows have class styles, Workplace objects have
object (i nstance) styles, as shown in Table 8-1 1 . Object i nstance styles defi ne
object behavior. They can be changed after an object has been created by cal l i ng
the wpSetStyle m ethod.

Table 8-1 1 . Object Class Styles

Style Description

OBJSTYLE_ NOCOPY Cannot be copied .

OBJSTYLE_NODELETE Cannot be deleted.

OBJSTYLE_ NO DRAG Cannot be d ragged.

OBJSTYLE_NOSHADOW Cannot have shadow created.

OBJSTYLE_ NOMOVE Cannot move.

OBJSTYLE _ NOPRI NT Cannot be printed.

OBJSTYLE_NOTDEFAUL TICON Destroy icon when object goes dormant.

OBJSTYLE _TEM PLATE Object is a template.

OBJSTYLE _NOTVISIBLE Object is hidden.

OBJSTYLE_NORENAM E Object cannot be renamed .

Object Templates: An object template is the pri mary user mechanism for creat ing
new i nstances of objects. Specifical ly, a template is a state of an object where the
default d rag operation is "Create another, " that is , dragg ing and dropping the
tem plate results i n the creation of an i nstance of the object. The visual
representation of a tem plate is the object's icon on top of a "yel low sticky pad " with
the top sheet sl ightly peeled up. Any object that supports the "Create another"
action can be changed by the user to and from a template state by select ing the
template check box on the General page in the object's setti ngs notebook. A
template is created automatical ly when a class is registered, un less the class
wpclsQueryStyle class method returns CLSSTYLE_NEVERTEM PLATE.

8-22 Application Design Guide

When the operat ing system is fi rst i nstal led, template objects reside i n the
Templates folder on the Desktop. The tem plates folder always contains a template
object for each class of object i nstal led on the system that supports the "Create
Another" act ion. Any new object registered by the Wi nRegisterObjectCiass function
that supports the "Create Another" action automatical ly appears i n this folder. A
template for each object class registered using this function cannot be removed
from the templates folder.

Object Details: Some Workplace classes def ine a set of i nformation that a user can
display in a detai ls view of a l l i nstances of objects belonging to the class. A details
v iew is a Presentation Manager container control window. For more i nformation on
Presentation Manager container control wi ndows, see OS/2 Programming Guide,
Volume II i n the OS/2 2.0 Technical l ibrary.

A detai ls view, as represented in F igure 8-1 8, consists of a wi ndow with data
arranged i n col umns which have head i ngs. A row of data, also known as a record ,
provides i nformation for a specific i nstance of an object belong ing to the class.
Each element in the detai ls v iew can be text, icons, or bit maps. OWNERDRAW of
elements is also supported.

Detai l s for Instances of MyObj ect Cl ass

lteml Item2 Item3 ltem4 ItemS Item6 Item7 ItemS

Instance 1

Instance 2

Figure 8-18. Details View for a Workplace Class

The column headi ngs for a detai ls view are specified by overrid ing the
wpclsQueryDeta i ls lnfo class method. A record that contai ns i nformation for an
object i nstance of the class is constructed by overrid i ng the wpQueryDetai lsData

i nstance method.

An object can i nherit the set of detai ls defi ned by its ancestors. A record contai n i ng
detai ls i nformation for an object, therefore, can contai n sets of detai ls for the object
that are defi ned by its parent, its g randparent, and so forth. To meet this
requ i rement, the Workplace constructs records as contiguous blocks of memory.

A record is built for an object by the override to the wpQueryDetai lsData instance

method. To i nherit the detai ls def i ned by ancestor classes, wpQueryDetai lsData

cal ls the parent c lass's wpQueryDetai lsData method, which cal ls its parent class's

wpQueryDetai lsData method, and so forth through the oldest ancestor that defi nes

detai ls data. With each cal l to wpQueryDetai lsData, a variable length block of

memory contain i ng a set of detai ls for the object is added to the record. A poi nter is

also moved to the end of the last block of memory added to the record where the

next cal l to wpQueryDetai lsData adds the next block of memory. As shown in

F igure 8-1 9 on page 8-24, each block in the record contai ns a set of detai ls for the

object defi ned by its class and/or by one of its ancestor classes.

Chapter 8. Workplace Programming Interface 8-23

Detai l s defi ned Detai l s defi ned Detai l s defi ned
by MyObject ' s by MyObject ' s by MyObject
grandparent parent

Figure 8-19. A Details Record for an Object

The format for detai ls i nformation contai ned i n a record is defi ned i n an override to
the wpclsQueryDeta i ls lnfo class method. The format is defined in a l i nked l i st of
CLASSFIELDINFO data structures for each detans data item i n a record. This l i nked
l i st is constructed i n the same manner as a record: wpclsQueryDetai ls lnfo cal ls its
parent class's wpclaQueryDetai lslnfo method, which cal ls i ts parent class's
wpclsQueryDetai ls lnfo method, and so forth. As shown in F igure 8-20, each cal l
adds a set of CLASSFIELDlNFO data structures to the l i nked l ist unti l the l i nked l i st
contai ns CLASSFIElDINFO data structures for each detai ls data item i n the object's
detai ls record.

Format of
Detai l s defi ned
by grandparent

Format of
Detai l s defi.ned
by parent

Format of
Deta i ls defi ned
MyObject

-->fi teml->fi tem2------>fi tem3->fi tem4------>fi tem5->fi tem&->fi tem7->fi tem8--->

Figure 8-20. Format for Items in a Details Record for an Object

The CLASSFIELDINFO data structure is defi ned i n the header f i les provided with the
OS/2 2.0 Toolkit. It descri bes the attri butes of detai ls data in a particular column. It
i ncl udes the tit le for the col umn head ing and the format of the data. The flags used
to specify the attribute of the tit le for the f ie ld and the data with i n the f ie ld are the
same as those used in the container control wi ndow's FIELDINFO data structure.

The CAR Sample Workplace Object in the OS/2 2.0 Toolkit can be used to i l l ustrate
the requi rements for defin ing detai ls data for a class of objects. CAR can provide
deta i ls data for CAR objects by:

1 . Defin ing a data structure for the items to be i ncluded in the detai ls v iew. as
shown i n Figure 8-:21 .

Figure 8-21 . Defining a Structure for CAR Details

8-24 Application Design Guide

2. Defi n ing and i n it ial iz ing a static array of CLASSFIELDINFO structures for each
detai l , as shown in F igure 8-22. This is done on class i n it ial ization, when
wpclsln itData is cal l ed .

Note: "Title " and " Icon " detai ls are defi ned for CAR objects by its ancestor
class WPObject. This means that CLASSFIELDINFO structures for "Title" and
" Icon " detai ls are defi ned and i n it ial ized in the WPObject class defi nit ion.

Figure 8-22 (Part 1 of 2) . Initializing CLASSFIELDINFO Structures for CAR Details

Chapter 8. Workplace Programming Interface 8-25

Figure 8-22 (Part 2 of 2) . Initializing CLASSFIELDINFO Structures for CAR Details

3. Defin ing the column head ings and format of the detai ls data p laced i nto the
object's detai ls record by overrid i ng the wpclsQueryDeta i ls lnfo class method, as
shown i n Figure 8-23 on page 8-27.

8-26 Application Design Guide

Figure 8-23. Defining Format of Details Data

Chapter 8. Workplace Programming Interface 8-27

4. Adding detai ls data to object's Detai ls record by overrid ing the
wpQueryDetai lsData i nstance method, as shown in F igure 8-24.

Figure 8-24. Appending Details Data to end of Object's Details Record

Direct Manipulation Methods
Di rect Manipu lation methods support d raggi ng and d ropping one object on another
object. The object being dragged is the source object, and the object on which the
source object is d ropped is the target object. The Workplace Shel l tracks a source
object that the user d rags, and notifies target objects and windows when the source �
object is bei ng d ragged over them and when it is d ropped on them. For target
objects i n the Workplace, the Shel l cal ls the target object's Di rect Manipu lation
methods to process the source object bei ng dragged and dropped.

For PM appl ications, the Shell sends DM_ messages to PM wi ndows usi ng the
standard Drag and Drop protocol . The Shel l w i l l drag source objects rendered as
OBJECT or as OS2FILE and wi l l accept source objects rendered in the same way.
The Shel l also w i l l send a DM_PRINTOBJECT message to items dropped on the
pri nter object.

Usage Note ---------------------------,

Users can drag source objects over wi ndows that an object creates. When this

occurs, the Shel l sends DM_ messages to these wi ndows. Therefore, wi ndow

procedures associated with the wi ndows that the object creates m ust be able to

process the DM_ messages. For more i nformation on d i rect manipu lation in PM

wi ndows, see the OS/2 Programming Guide, Volume II i n the OS/2 2.0 Technical

L ibrary.

8-28 Appl ication Design Guide

Target objects are not necessari ly able to process every type of source object that is
dropped on them. They are, however, capable of processi ng more than one type of
d ropped source object. Pr i nter objects, for example, cannot print b inary f i les, but
they can print both text f i les and graphics f i les. Because of d iffering capabilities.
each target object should determ i ne if it can process the source object bei ng
d ropped on it.

Table 8-12. DM Notifications from the Shell to Target Objects and to Windows

Notification Objects Windows
Format d rag wpFormatDragltem None
i nformation
(source)

Request renderi n g wpRender DM_RENDER
format (source)

Rendering request wpRenderComp l ete DM_RENDERCOMPLETE
com p leted·
(source)

Objects being wpDragOver DM_DRAGOVER
dragged over
(target)

Object has bee.n wpDrop DM_DROP
d ropped (target)

Drag/Drop is wpEndConversation DM_ENDCONVERSATION
comp l ete (target)

Save/Restore State Methods
The Save/Restore State methods, as shown i n Table 8-1 3 are i mportant to the class
definit ions of persistent objects.

Table 8-1 3. Save/Restore the Object's State Methods

Method Description

wpSavelmmediate Save the object's state.

wpSaveDeferred Asynchronously saves the object's state.

wpSave/wpRestoreState Save/Restore the object's state.

wpSave/wpRestoreData Save/Restore blocks of i nstance data.

wpSave/wpRestorelong Save/Restore a 32-bit i nstance data value.

wpSave/wpRestoreStr ing Save/Restore an ASC I I i nstance data str ing .

When an object is awakened, wpRestoreState is cal l ed by the Shel l . The
wpSavelmmediate method cal ls wpSaveState. The Shel l cal ls wpSavelmmediate
and wpSaveState when an object is closed or made dormant or the system is shut
down. The wpSavelmmediate method can also be cal led by an object 's methods
when a critical i nstance variable is changed. The wpSaveDeferred method
asynchronously saves data and, for performance reasons, should be used i n
preference to the wpSavelmmediate method.

To save or restore data relevant to an object, override the wpSaveState and
wpRestoreState methods. The override for wpSaveState cal ls wpSaveData,
wpSavelong, and wpSaveStri ng, dependi ng on the type of i nstance data associated
with your object. S im i larly, the override for wpRestoreState cal ls wpRestoreData,

wpRestorelong, and wpRestoreString.

Chapter 8. Workplace Programming Interface 8-29

Object Usage Methods
Object Usage methods, as shown i n Table 8-1 4, al low an obj ect to keep track of i ts
resources and how it is bei ng used .

Table 8-14. Object Usage Methods

Method Description

wpAddToObjUselist Add an item to the object's i n-use l ist.

wpDeleteFromObj Uselist Remove an item from the object's i n-use l ist.

wpFi ndUseltem Retrieve an item from the object's i n-use l ist.

Every Workplace object i n the system has an i n-use l ist. The i n-use l i st provides the
object with i nformation, such as the number of container wi ndows i nto which the
container has been i nserted. It also provides the number of open views (contents
and setti ngs) of i tself that al ready exist and how m uch memory it has a l located.

The i n-use l i st is a l i nked l ist of USEITEM data structures. The USEITEM data
structure consists of an item type and a poi nter to the next USEITEM data structure,
and is i mmediately fol lowed by an item type-specific data structure. The types of
items that can be added to an object's i n-use l ist and the type-specific data
structures that fol low each USEITEM data structure are shown in Table 8-1 5.

Table 8-15. Types of In-Use Items for Objects

Item Description USEITEM +
USAGE_M EMORY Memory has been a l located by M E MORYITEM

wpAI IocMem m ethod .

USAGE OPENVIEW A view of the object has been opened. V IEWITEM

USAGE_RECORD The object has been i nserted i nto a RECORDITEM
container wi ndow.

The USEITEM, MEMORYITEM , VIEWITEM, and RECORDITEM data structures are
shown i n F igure 8-25 on page 8-31 and are defi ned i n the header fi l es that are
provided with the Toolkit.

8-30 Application Design Guide

Figure 8-25. Data Structures for Object In-Use Items

The wpAddToObjUseList method adds items to the object's i n-use l i st when the
events outl i ned in Table 8-1 5 on page 8-30 occur. When memory is a l located for an
object by its wpAI IocMem method, wpAI IocMem cal ls wpAddToObjUseList to add a
USAGE_MEMORY item to the object's i n-use l i st. When a v iew of an object is
opened by the object's wpOpen method, this method is cal led to add a
USAGE_OPENVIEW item to the object's i n-use l i st. When an object is i nserted i nto a
contai ner wi ndow, a USAGE_ RECORD item is added to the object's i n-use l i st by the
object's wpCnrl nsertObject method.

Conversely, when memory is freed by the object's wpFreeMem method,
wpDeleteFromObjUseList is cal led by wpFreeMem to remove a USAGE_MEMORY
item from the object's i n-use l ist. When views are closed by the object's wpCiose
method, wpDeleteFromObjUseList removes a USAGE_ VIEW item from the object's
i n-use l ist. When objects are removed from a container wi ndow by the object's
wpCnrRemoveObject method, wpDeleteFromObjUselist removes a
USAGE_RECORD item from the object's i n-use l ist.

wpFindUseltem is used to determ i ne how an object is currently bei ng used. It
searches an object's i n-use l ist for items of a specified type and returns a poi nter to
the USEITEM structure that matches the specified type

Chapter 8. Workplace Programming Interface 8-31

Setup/Cleanup Methods
Setup/Cleanup M ethods, as shown in Table 8-1 6, support object i n it ial ization and
destruction.

Table 8-16. Setup/Cleanup Methods

Method Description
wpFree Destroy the object and deal locate its associated

resources.

wpln itData Al locate and I n itial ize the object's i nstance data.

wpScanSetupString Parse the setup string that is specified when the object is
created.

wpSetup Change object characteristics and behaviors as specified
in setup string .

wpUnlnitData Deal l ocate object's i nstance data.

Classes can define KEYNAMES and values that affect the behavior of thei r objects.
KEYNAM E values can be specified i n a setup stri ng when an object is created by
cal l i ng WinCreateObject or when a change i n the behavior of an existi ng object is
requ i red and i nit iated by cal l i ng WinSetObjectData. Because KEYNAMES have
default values, setup str ings are not requ i red for these cal ls .

Every class def ines its own set of KEYNAMES and values. KEYNAM ES and the
val ues supported by the WPObject class are l i sted in Table 8-1 7.

Table 8-1 7 (Page 1 of 3) . WPObject KEYNAMES and Values

KEYNAME Value Description

TITLE Title Sets the object's titl e .
Equivalent to cal l i ng the
wpSetTitle method.

ICON FILE f i lename Sets the object's icon .
Equivalent to cal l i ng the
wpSetlconData m ethod.

HELPPANEL i d Sets t h e object's default h e l p
panel . Equivalent t o cal l ing the
wpSetDefaultHelp m ethod.

TEMPLATE YES User can create object template.
Equivalent to cal l i ng wpSetStyl e
method with
OBJSTYLE_ TEM PLATE style.

NO User cannot create object
tem p l ate.

NO DELETE YES User cannot delete object.
Equivalent to cal l in g wpSetStyle
method with
OBJSTYLE _NO DELETE style.

NO User can delete object.

a-.32 Application Design Guide

Table 8-1 7 (Page 2 of 3) . WPObject KEYNAMES and Values

KEYNAME

NOCOPY

NO MOVE

NOSHAOOW

NOTVISIBLE

NOPRINT

ICON RESOURCE

ICONPOS

OBJECTI O

Value Description

YES User cannot copy object.
Equ ivalent to cal l i ng wpSetStyl e
m ethod with
OBJSTYLE_NOCOPY style.

NO User can copy object.

YES User cannot move obj ect.
Equ ivalent to cal l i ng wpSetStyl e
method with
OBJSTYLE_NOMOVE style.

NO User can move object.

YES User cannot create shadow of
object. Equ ivalent to cal l i ng
wpSetStyl e method with
OBJSTYLE_NOSHAOOW .style.

NO User can create shadow of
object.

YES Object is not vis ib le . Equivalent
to cal l i ng wpSetStyl e method
with OBJSTYLE_NOTVISIBLE
style .

NO Object is v is ib le .

YES User cannot p r i nt object.
Equ ivalent to cal l i ng wpSetStyle
method with
OBJSTYLE_NOPRINT style .

NO User can print object.

id , module Sets the object's icon.
Equ ivalent to cal l i ng
wpSetlconOata method. The
" id " is the icon resource 10 i n
the dynam ic l i n k l i b rary (OLL)
" modu l e . "

x ,y Sets the object's i n itial icon
position in a folder. The x and y
val ues represent the posit ion i n
the folder i n percentage
coord i nates.

< name > Sets a persistent 10 for the
object. The OBJECTIO can be
used to obtai n a poi nter or
handl e to the object by cal l i n g
the wpclsQueryObject method
or Wi nQueryObject function. An
OBJ ECTI O is any u n ique str ing
preceded with a ' < ' and
term i nated with a ' > . '

Chapter 8. Workplace Programming Interface 8-33

Table 8-1 7 (Page 3 of 3) . WPObject KEYNAMES and Values

KEYNAME Value Description
NORENAME YES User cannot rename object.

Equ ivalent to cal l i n g the
wpSetStyl e method with
OBJSTA YLE_NORENAME style.

NO User can rename object.

NOD RAG YES User cannot d rag object.
Equ ivalent to cal l i ng wpSetStyl e
method with
OBJSTYLE_NODRAG style.

NO User can d rag obj ect.

V IEWBUTTON H I DE Views of object have a h ide
button i nstead of a m i n i m ize
button.

M I N I M IZE Views of object have a m i n i m ize
button i nstead of h ide button.

M I NW I N H I DE Views of object are h i dden when
m i n i m ize button is selected.

VIEWER Views of object m i n i m ized to
m i n i m ized wi ndow viewer when
m i n i m ize button selected.

DESKTOP Views of object m i n i m ized to
Desktop when m i n i m ize button
selected.

CONCURRENTVIEW YES New views of object created
every t ime user selects open.

NO Open views of object resurface
when user selects open.

OPEN SETTINGS Open setti ngs view when object
is created or when
Wi nSetObjectData is cal led.

DEFAULT Open default v iew when object
is created or when
WinSetObjectData is cal led.

KEYNAM ES and thei r val ues are specified in a setup str ing as shown in F igure 8-26.

Figure 8-26. Example of Object Setup String

KEYNAMES and thei r values are separated by semicolons i n the setup stri ng. The

escape character (A) fol lowed by a comma or sem icolon can be used to represent a

comma or semicolon if they are requ i red i n a KEYNAME value specification.

KEYNAMES are processed by an object's wpSetup method, which is cal led when

WinCreateObject and Wi nSetObjectData are cal led by an appl ication . Classes that

def ine thei r own KEYNAMES override the wpSetup method, as shown i n Figure 8-27

on page 8-35. The override for wpSetup scans the setup stri ng for its KEYNAMES

and processes them.

8-34 Appl ication Design Guide

Figure 8-27. Processing KEY NAMES for a Class

Because wpSetup is cal l ed as a result of WinCreateObject and WinSetObjectData,
appl i cations can effect changes to objects that al ready exist on the Desktop and are
being used. For example, to effect changes to the icons for objects that al ready
exist, an app l ication calls:

1 . WinQueryObject to get a hand le to the object using the object's OBJECTID.

2 . WinSetObjectData with a ICONDATA KEYNAME val ue specified i n the setup
stri ng.

The WPAbstract Class: Persistent Objects: By defi nit ion, WPAbstract and
WPFi leSystem objects are persistent objects. Because the the class examples used
i n this d iscussion are derived from the WPAbstract class, consider the
characteristics of WPAbstract objects.

WPAbstract objects are identified by a numeric handl e. Persistent objects need to
keep track of where i nstances are, thei r attributes, and i nstance data. These
requ i rements are reflected i n the method overrides defined for this class. There are
no new methods for the WPAbstract class. However, the WPAbstract class
overrides some of the methods i nherited from WPObject; methods that act on
i nstance attributes, data and object state i nformation. These i nclude:

• wpCopyObject
• wpQueryTit le
• wpQuerylcon
• wpSetup
• wpSave lmmediate
• wpSaveState
• wpRestoreState
• wpMoveObject
• wpQuerylconData
• wpSetlconData

Workplace Class Methods: Implied Metaclasses
Al l Workplace objects have i mpl i ed metaclasses. This means that the object's
metaclass is defi ned in the same fi le as the object's class. This means that a
separate class defin it ion f i le is not requ i red for Workplace metaclasses. This is the
primary advantage of i m pl i ed metaclasses. The number of fi l es to bu i ld an object is
reduced.

Metaclasses def ine al l the class methods for a class. C lass methods act on class
data common to al l object i nstances of the class. M etaclasses are, therefore, the
mechanisms for defi n i ng class properties, as opposed to i nstance properties.
Workplace class properties i nclude default attributes for all i nstances of the class,
for example, the default object tit le, the default help panel , the default icon, and so
forth.

Chapter 8. Workplace Programming Interface 8·35

Workplace class methods are prefixed by "wpcls. " Some of the class methods
defined by the WPObject class are shown in Table 8-1 8.

Table 8-18. Some WPObject Class Methods

Method

wpclsFi ndObjectEnd

wpclsFindObj ectFi rst

wpclsFindObjectNext

wpclsQueryDefaultHe l p

wpclsQueryDefaultView

wpclsQueryDetai ls

wpclsQueryDetai ls lnfo

wpclsQuerylcon

wpclsQuerylcon Data

wpclsQueryObject

wpclsQueryStyle

wpclsQueryTitle

Description

End a search for an object belong ing to
the class.

Beg i n a search for an object belongi n g to
the class.

Find another object belong i ng to the
c lass.

Get the defau lt help panel for i nstances of
the class.

Get the default open view for i nstances of
the class.

Get the default detai ls view items for
i nstances of the class.

Get and set detai ls i nformation for
i nstances of the class.

Get the default icon for i nstances of the
class.

Get and set the default icon data for
i nstances of the class.

Get poi nter or handl e to persistent object.

Get the default object style for i nstances
of the class.

Get the default title for i nstances of the
class.

Default class characteristics are i nherited by i nstances of the class un less the class
overrides the methods that operate on those characterist ics. For example, to
defi ne a default object style for i nstances of MyObject, MyObject overrides
wpclsQueryStyle and returns the appropriate default class style. Default class �
styles for objects belonging to a class are shown i n Table 8-1 9.

Table 8-19. Default Class Styles for Objects

Style Description

CLSSTYLE _ NEVERMOVE User cannot move object.

CLSSTYLE_NEVERSHADOW User cannot create shadow for object.

CLSSTYLE_NEVERCOPY User cannot copy object.

CLSSTYLE_NEVERTEM P LATE User cannot create template for object.

CLSSTYLE_NEVERDELETE User cannot delete object.

CLSSTYLE_NEVERPRINT User cannot pr int object.

CLSSTYLE_NEVERDRAG User cannot d rag object.

CLSSTYLE _ N EVERVISIBLE Object i nstances are always invisible.

CLSSTYLE NEVERRENAME User cannot rename object.

8-36 Application Design Guide

The F indObject class methods (wpclsfindObjectfi rst, wpclsfi ndObjectNext, and
wpclsfindObjectEnd) are si m i lar in function to the Dosfind functi ons in the OS/2 f i l e
system . The wpclsfindObjectFi rst method i n it iates the search for objects belonging
to the class with the specified characteristics. The wpclsFindObjectEnd method
ends the search. They are typically overridden -when a more robust FindObject
function is requ i red or when the user i n it iates a search for an object.

Creating a Workp.lace Object: The Car Object
Many of the th ings previously discussed are demonstrated i n the CAR Sample
Workplace Object that is i nc luded i n the Toolkit. CAR is a sp�n-off i m plementation of
the car object example used i n the Systems Application Architecture: Common
User Access Guide to User Interface Design and h igh l ighted in the .. f i rst part -of this
chapter.

·The CAR object has two views:

• An "Open car" view which is a representation of a car that moves randomly
around a window.

• A "Setti ngs" v iew or Setti ngs notebook which al l ows the user to change the
sou nd of the horn (on the " Horn Beep" page) and the speed of the car (on the
" Dashboard " page) .

The " Horn Beep" and " Dashboard" pages i n CAR's setti ngs notebook are d ialog
windows whose contents are defined in a d ia log template in the CAR. RC resou rce
fi le . The resources are appended to the b inary CAR.DLL fi le . The help panels
associated with the d ialogs are defined in the CAR.HLP help li brary. The
association between the help panels and the d ialogs is establ ished with the d ialog
template i n the resource fi le .

CAR is a persistent object, but not a part of the fi l e system. It is , therefore, derived
from the WPAbstract class, which is derived from the WPObject root Workplace
class. This m eans that CAR i nherits the m ethods from WPAbstract, which i n turn
i nherits al l , and overrides some, of the i nstance and class methods from WPObject.

CAR defines new methods and overrides some i nstance and class methods
i n herited from both WPAbstract and WPObject. New methods def ined -for the CAR
class are summarized in Table 8-20.

Table 8-20. New Methods tor CAR Class

Method

carSetlnfo

carQuerylnfo

wpAddDas hboardPage

wpAddHornBee pPage

Description

Sets up the car i nformation. It is cal led by the d i alog
procedure to update the car data, as the user interacts
with the dia log wi ndow.

Gets the car i nformation. I t is cal led by the dia log
p rocedure to get the l atest car _data when the dia log
wi ndow opened.

I nserts the " Dashboard " page In the Settin gs Notebook.
Jt is cal led by the wpAddSett ingsPage method.

I nserts the " Horn Beep" page i n tbe Settings Notebook.
It is cal led by the wpAddSettingsPage m ethod.

Chapter 8. Workplace Programming Interface �37

The i m plementat ion of the CAR obj ect consists pri mari ly of overrides to i nstance
and class methods i nherited from the WPObject and WPAbstract classes: �

• Providing for Persistence of the CAR Object

Because the CAR class defi nes i ts own set of data, it overrides the wpSaveState
and wpRestoreState methods. These method overrides, i n turn, cal l the
wpSavelong and wpRestorelong methods to save i nstance data defi ned for the
CAR class.

• Changing the SeHings Notebook Pages

CAR creates Setti ngs Notebook pages by overrid ing the wpAddSett ingsPage
method i nheri ted from WPObj ect. The wpAddSett ingsPage method cal ls the new
methods defi ned by the CAR class, wpAddDashboardPage and
wpAddHornBeepPage. In turn, each of these cal l the wplnsertSett ingsPage
method i nherited from WPObject.

• Changing the Context Menu

Because the user action " P ri nt a car" does not make sense for this obj ect, the
CAR class removes the Print option from the CAR object's context menu by
overrid i ng the wpfi lterPopupMenu i nherited from WPOject.

• Adding an Action to the Context Menu

The CAR class adds a " Beep horn " action to i ts context menu by overrid ing the
wpModifyPopupMenu method i nherited from WPObject. The method override for
wpModifyPopupMenu cal ls the wplnsertPopupMenultem , also i nherited from
WPObject, to i nsert this item i nto CAR's context menu.

• Adding an Item to the Open Menu

The CAR class adds a Open car view (OPEN_CAR) to i ts "Open" menu by
overrid ing i ts wpModifyPopupMenu method. The method override cal ls
wplnsertPopupMenultem to i nsert Open car in the "Open menu. "

• Creating and Registering a new Open VIew

A wi ndow for the OPEN_CAR view is created and opened by cal l i ng
WinCreateStdWi ndow. The window procedure for the cl i ent of the OPEN_CAR
wi ndow reg isters the OPEN_CAR view and associates the OPEN_ CAR view with
that wi ndow by cal l i ng the wpRegisterView method.

• Processing New Menu Items on a Context or Pulldown Menu

When a class defi nes new actions for i ts menus, it must provide for the
processi ng of the actions when the user selects the act ion. This is done by
overrid i ng i ts wpMenultemSelected method i nherited from WPObj ect.
Dependi ng on the action the user selects, the method override for
wpMenultemSelected cal ls the object's wpOpen method to open the OPEN_ CAR
view or cal ls the carBeepHorn method to beep the car's horn.

• Processing Help for New Actions on Context Menu

When a class defi nes new actions for i ts context menu, i t m ust also provide for
the processing of the HELP for those actions when the user requests it. This is
accompl ished by overrid i ng the wpMenu ltemHel pSelected method i nherited from
WPObject. G iven the act ion selected by the user, the method override for
wpMenultemHel pSelected cal ls the wpDisplayHelp method i nherited from
WPObject to display the he lp for that act ion. wpDisplayHelp requ i res the ID for �
the help panel associated with the act ion, as wel l as the name of the hel p l i brary
where it resides.

8-38 AppJk:ation Design Guide

The i m plementation of the CAR object also demonstrates:

1 . The use of a Release Order i n CAR.CSC.

2. The use of external stem and prefix attributes in the Class section of CAR.CSC.
Debugging is easier because method names are external ized.

3. The use of the message queue for the Shel l . Object code runs on the Shell's
thread. Wi ndows associated with objects receive messages through the SheU's
message queue. Objects do not need thei r own message queues.

The Workplace Application Interface
Outside the Workplace envi ronment, objects are Dlls which consist of data and
code that operates on that data when objects are i nstantiated i n the Workplace
(runtime) envi ronment. Workplace objects have no " l ife" outside the Workplace
envi ronment.

Workplace classes "come to l ife" when the class is reg istered with the Workplace
Shel l and the class is i nstantiated. The Workplace Shel l and SOM provide the
underlying code (predefi ned Workplace Obj ect methods) that supports an object's
existence. The Shel l cal ls the appropriate object methods when the user interacts
with the object. I n this sense, the She l l is the c l ient of a l l Workplace objects. The
Shel l manipu lates the object (its code) on behalf of its users.

Appl ications, on the other hand, cannot cal l Workplace object methods di rectly.
They are not cl ients of Workplace objects, in the same sense that appl ications can
be c l ients of SOM objects. Workplace objects are derived from the WPObject class,
which is derived from the SOMObject class. They share all the features of SOM
objects: i nheritance, polymorphism, and so forth. But only the Shel l can di rectly
manipu late them .

Because there are ti mes when appl ications may need to effect changes to the
Desktop and to objects on the Desktop, the Workplace Shel l provides functions that
a l low you to effect those changes. These are summarized i n Table 8-21 on
page 8-40.

Chapter 8. Workplace Programming Interface 8-39

Table 8-21 . Workplace API

Function Description

WinCreateObject Create an obj ect.

W i n DeregisterObjectCi ass Deregisters (removes) a Workplace object c lass.

W i nDestroyObject Delete a Workplace object.

WinEnumObjectCiasses Get a l ist of al l Workplace c lasses that have been
registered.

WinFreelcon Free pointer to i.con a l located by WinLoadFi le lcon

WinLoadFi le lcon Get a pointer to an icon associated with the specified
icon f i le .

WinQueryObject Get a handle to a g iven object.

WinRegisterObjectCi ass Register a Workpl ace object c lass.

WinReplaceObjectCiass Replace a registered class with another registered c lass.

W i nRestoreWindowPos

Wi nSetF i le lcon

WinSetObjectData

WinShutdownSystem

W inStoreWi ndowPos

Object Class Functions

Restore a window to the state it was in when
WinStoreWindowPos was l ast cal l ed for the same
appl i cation and key name.

Set the icon for a f i le .

Change settings on an object that was created with the
WinCreateObject function.

Close down the system.

Save the current state of the specif ied wi ndow.

In order for the Shel l to know how to manipulate objects on the user's behalf, the
Shel l m ust know about the object class and the class definit ion, that is, its data and
methods. Object classes, therefore, must be registered with the Shel l .
Wi nEnumObjectCiasses, WinRegisterObjectCiass, WinDeRegisterObjectCiass, and
WinReplaceObjectCiass enable appl ications to affect object classes registered with
the Workplace Shel l .

Wi nEnumObjectCiasses a l lows an appl ication to get the l i st of al l Workplace object
classes that have been registered with the Shel l . �

Wi nRegisterObjectCiass and Wi nDeRegisterObjectCiass al low an appl ication to
reg ister and deregister Workplace object classes with the Shel l .
WinRegisterObjectCiass registers the specified Workplace object class that is
defined i n the specified DLL module that was created using the SOM compi ler. The
name of the object class must match the l i b rary name specified in the .DEF f i le used
to bu i ld the DLL. Because al l registered classes are mai ntai ned in the OS2. 1N I f i le
and are cached upon system i n it ial ization , a class should be removed if i t is no
longer needed.

WinReplaceObjectCiass can be used to replace an existi ng (registered) object class

with another class. The repl acement class is a subclass of the class being rep laced.

This type of class is useful for modify ing the behavior of i nstances of a Workplace

object class without the i nstances being aware of the new class.

Wi nReplaceObjectCiass can also be used to " u ndo" the replacement and restore the

orig i nal class that defi nes the behavior of its i nstances.

8-40 Appl ication Design Guide

Object Instance Functions
Appl ications can create and destroy object i nstances of Workplace classes by
cal l i ng WinCreateObject and WinDestroyObject. To create an object, an appl i cation
m ust specify the obj ect's class name, t it le, setup i nformation, and where i t is to be
placed on the Desktop.

''

Each object class defi nes a set of KEYNAME, or setup, variables and values that can
be used to control the attri butes and behavior of i ts objects. An object's setup
i nformation is processed by its wpSetup method i nherited from WPObject. The
object's wpSetup method is cal led when the object is created by Wi nCreateObject.
Every Workplace class i nherits the set of KEYNAMES defi ned for the WPObj ect
class. Every Workplace class can defi ne additional KEYNAMES, un ique to that
class. KEYNAMES defi ned by the Workplace objects provided with the Shel l are
shown in Table 8-1 7 on page 8-32.

Newly-created objects need to be placed somewhere on the Desktop, either d i rectly
on the Desktop or in a folder. All Workplace objects have object I Ds associated with
them. As shown in Table 8-22, predef ined system folders have object I Ds
associated with them . When an object is created by WinCreateObject, an
appl i cation can specify its location as one of the predefi ned system folders .

Table 8-22. Object IDs for Predefined System Folders

ID System Folder

< WP_NOWHERE > The h idden folder.

< WP _DESKTOP > The Desktop.

< WP_SYSTEM > The System folder.

< WP_TE M PS > The Templates folder.

< WP _CONFIG > The System Setup folder.

< WP_START > The Startup folder.

< WP_I NFO > The i nformation folder.

< WP_DRIVE > The Drives folder.

WinCreateObject returns a hand le to the newly-created object. This handle is
persistent and can be used at any t ime to reference the object. Appl ications that did
not create the object, can get a handle to the object by cal l i ng Wi nQueryObject.
WinQueryObject requ i res either a fu l l path name for a fi l e object or an objectiD.

Appl ications that can get a hand le to an object can change the behavior or state of
that object by cal l i ng Wi nSetObjectData. This funct ion results i n the Workplace
Shel l cal l i ng the object's wpSetup method. By specify ing a val ue for KEYNAME
variables defi ned for the object's class, an appl ication can , therefore, effect changes
to objects that al ready exist on the Desktop. The process of effecti ng changes to
existi ng objects on the Desktop is summarized i n F igure 8-28.

Figure 8-28. Changing Existing Objects on the Desktop

Chapter 8. Workplace Programming Interface 8-41

REXX Utility Workplace Functions
The REXX Language p rovi des uti l i ty functions for Workplace classes and objects.
These functions are l i sted i n Table 8-23.

Table 8-23. REXX Utility Workplace Functions

Function Description
SysRegisterObjectCiass Register a Workpl ace object c lass

SysDeregisterObjectCiass Deregister a Workplace object c lass

SysQueryCiasslist Get the l ist of Workplace class registered
with the She l l .

SysC reateObject Create a Workpl ace object.

REXX uti l ity functions al l ow users to write batch f i les to operate on Workplace
classes and objects i n the same way as appl ications. For example, a s imple REXX
batch fi le , as shown i n Figure 8-29, can l ist al l Workplace classes reg istered with
the Shel l .

Figure 8-29. REXX Batch File to List all Classes Registered With Workplace

Install ing a Workplace Object
Workplace objects can be i nstal led on the Desktop i n one of two ways:

• By runn ing an i nstal l ation program or batch fi l e
• By usi ng the Workplace C lass List uti l i ty

Object Installation Programs
Appl ication developers can provide i nstal l ation programs for thei r objects. From the
user's perspective, i nstal lation consists of putting a diskette i n the diskette d rive,
double-cl i cking on the diskette drive and then on the i nsta l lation program.

An i nstal l at ion program is responsib le for:

• Copying the DLL that contains the object's c lass definit ion from a diskette to the
\052\DLL directory or to a di rectory in the L IBPATH.

• Registeri ng the class and i ts DLL name with the Shel l by cal l i ng
Wi nRegisterObjectCiass.

• Creating an object i nstance of the class and p lacing it on the Desktop or in a

particular folder by cal l i ng WinCreateObject.

An example of an i nstal lation program for a Workplace object is shown i n
F igure 8-30 o n page 8-43.

8-42 Application Design Guide

Figure 8-30 (Part 1 of 2) . Installation Program for Workplace Object

Chapter 8. Workplace Programming Interface 8-43

Figure 8-30 (Part 2 of 2) . Installation Program for Workplace Object

I nstant iat ing an object is an optional respons ib i l i ty for an i nsta l lat ion program .
When a class is registered by cal l i ng Win RegisterObjectCiass, a n object template i s
placed i n the Templates Folder on the Desktop, i f the class supports templati ng .
Users can create i nstances of these objects by "teari ng off" a copy of the template.
This can be useful for larger appl ications that defi ne data f i le objects that are
associated with program objects.

Object Installation Batch Files
An i nstal lation batch fi l e written i n the REXX language performs the same
operations, but uses the REXX-Ianguage uti l i ty functions SysRegisterObjectCiass,
SysCreateObject, SysDeRegisterObjectCiass i nstead of the Wi nRegisterObjectCiass,
WinCreateObject and WinDeRegisterObjectCiass Workplace functions. An example
of an i nsta l lat ion batch f i le written usi ng the REXX-Ianguage uti l i ty functions is
shown in F igure 8-31 on page 8-45. For more i nformation, see Procedures
Language 2/REXX Reference i n the OS/2 2.0 Technical L ibrary.

8-44 Appl ication Design Guide

Figure 8-31 . REXX Batch File for Installing Workplace Objects

The Workplace Class List Object
The Tool kit provides a Workplace Class List Object that is automatical ly i nsta l led
dur ing i nstal lation of the Tool kit. This object is a tool that provides a windowed user
i nterface for general Workplace class registration and object creation activities. It
performs all the functions that a typical Workplace object i nstal l ation program m ust
provide, with the exception of copying fi l es from an i nstal lation diskette to a hard
d isk. It is a fast and easy way to bu i ld and test objects i n an appl i cation
development envi ronment. It is not a tool for the general OS/2 user, who knows
nothi ng about Workplace classes but only about Workplace objects.

The Workplace Class List Object displays a h ierarchical l i st of al l classes registered
with the Shel l . The user can add a class to this l ist or perform a number of actions
on a specific class in the l ist. The user can create an i nstance of the class, replace
and unreplace the class, and delete the class.

The Workplace C lass List uses WinEnumObjectCiasses to get the l i st of all classes
registered with the Shel l . WinEnumObjectCiasses returns only the name of the
class and the DLL module that contains the class defin it ion. It does not return
i nformation on the class ancestry that can be used to construct a h ierarchical l i st of
classes. Because the Workplace Class List is a Workplace object, however, it can
cal l the somParent function to determine parentage of each class and use this
i nformation to construct the l i st.

The Workplace Class List uses the WinRegisterObjectCi ass,
WinDeregisterObjectCi ass, WinReplaceObjectCiass, and WinCreateObject funct ions
to register, deregister, and replace object classes and to create objects.

Usage Note ------------------------�

This tool can be used to delete any Workplace class other than the predefined
Workplace classes p rovided with OS/2 2.0. Its users should u nderstand
Workplace classes and how they are defined so that they can be recovered.
Because the general user may not have this l evel of understandi ng, app l ication
developers should not distribute this tool with the i r objects to the i r customers.
The recommended way of del iveri ng objects to customers is through I nstal l ation
Programs or Batch Fi les.

Chapter 8. Workplace Programming Interface 8-45

Programming Considerations for the Workplace
Appl ications developers should be aware of the fol lowi ng items with respect to the
Workplace.

Extended AHrlbutes and the Workplace

Appl ications not written for the Workplace need to be aware of how . LONGNAME
and .ASSOCTABLE extended attributes are used by the Workplace.

In the Workplace, the user can edit the name of an object. When an object is a f i le
system object, the Workplace renames the fi l e object to match the name the user
has entered. When the fi l e system object resides on an HPFS disk, the new f i le
name can have a long name and can accommodate whatever the user has entered.
When the fi l e system object resides on a FAT disk, the new fi l e name m ust be no
longer than e ight characters. If the user has entered a name longer than e ight
characters, the Workplace uses the fi rst e ight characters to rename the object and
places the remai n i ng characters in a . LONGNAME extended attri bute associated
with the fi l e system object. This means that the t it le of a fi l e object is the �
. LONGNAME extended attribute or the fi l e name, if no . LONGNAME exists.

An .ASSOCTABLE extended attri bute contai ns i nformation that associates data fi l es
with the app l ications that create them or that know how to use them. Appl ications
that a data fi le has been associated with appear in the l ist of Open actions for the
data fi le. This means that "openi ng the fi le " is equivalent to starti ng the appl ication
that creates or modifies that f i le. The appl ication is passed the name of the fi l e as a
command-l i ne parameter .

. ASSOCTABLE extended attri butes are defi ned i n an appl ication's resource fi l e as �
shown i n F igure 8-32.

Figure 8-32 . . ASSOCTABLE Extended Attributes

When an appl ication that defi nes an .ASSOCTABLE is i nstal l ed i n the Workplace, the
She l l automatical ly creates object templates for each type of data fi l e that has been
associated with the appl ication.

For more i nformation on extended attri butes, see the OS/2 Programming Guide,
Volume I i n the OS/2 2.0 Techn ical Li brary.

Printing In the Workplace Shell
I n order to support pri nti ng the contents of an object from the Desktop-by usi ng the
object's pop-up menus or by dragg ing the object and dropp ing it on the pri nter
object-the object 's class defi n it ion must override the wpPri ntObject method that is
i nherited from its parent class.

The new class is created as a subclass of an exist ing class. For example, if the
object is to be a data f i le , the wpDataF i le class wou ld be used as the parent class.
In the class defi n it ion f i le , the new class overrides the wpPri ntObject method that it
i nherits from its parent c lass. The new class's version of wpPri ntObject contains the
code that pri nts the contents of the object.

8-46 Application Design Guide

Note: It is recommended that the code i n the object's version of wpPrintObject start
a separate thread to execute the code that actual ly pri nts the contents of the object.
By doing the pri nti ng i n a separate thread, control can be returned to the Shel l and
the user i m mediately. Supporti ng code, such as d ialog wi ndows, should be in the
separate thread as wel l .

I f th is object class is to recognize f i les that al ready exist, override the
wpclsQuerylnstanceType and the wpclsQuerylnstanceFi lter class methods to check
for appropriate .TYPE EAs or f i le extensions.

Chapter 8. Workplace Programming Interface 8-47

Summary

Table 8-24 (Page 1 of 2) . Summary of Workplace Terms

Term

Conditional Cascaded
Menu

Class

Direct Manipulation

Encapsulation

Extended AHribute

Hierarchical Inheritance

Inheritance

Metaclass

Method

ObJect

Polymorphism

Pop-up menu

Persistent object

Settings Notebook

8-48 Application Design Guide

Description

A pul l -down menu associated with an item that has a
cascade m i ni-push button beside it i n an object's pop-up
menu. The pu l l-down menu is displayed when the user
selects the m i n i-push button.

A general descr iption of an object. C lasses define data
which represents the state of an object and methods that
define the object's behavior and change the state of the
object.

The user's abi l ity to i nteract with an object by using the
mouse, typical ly by d raggi ng an object around on the
desktop and d ropping it on other objects.

H id ing an object's i m p lementation, that is , its private,
i nternal data and methods. Pr ivate variables and
methods are accessib le only to the object that conta ins
the m .

Conta in i nformation about a f i le object. T h e i nformation
contained i n EAs is more comprehensive and varied than
the i nformation displayed by the DIR com mand. EAs are
not part of the fi l e object and are maintai ned by the fi l e
system

The relationsh i p between parent and chi ld classes.
Inheritance between objects is h ierarch ica l . An obj ect
that is l ower i n the i nheritance h ierarchy than another
object (that is, a ch i ld object of a parent or ancestor
object) i nherits a l l the characteristics and behaviors of
the objects above it in the h i e rarchy (ancestor objects) .

The derivation of new (chi ld) c lasses from exist ing
(parent) classes. The new c lass i nherits a l l the data and
m ethods of the parent class without having to redefine
the m .

Defines class m ethods a n d class properties for t h e class
of a c lass. Class m ethods act on c lass data common to
al l object i nstances of the class.

A method is a function that defi nes a behavior for a c lass
or object.

A specific i nstance, or i nstantiation, of a c lass. Objects
have associated data, cal l ed the object's state, and a set
of behaviors, cal l ed the object's methods.

The abi l ity to have different i mplementations of the same
m ethod for two or more classes of objects.

A menu that l ists the actions that a user can perform on
an object. The contents of the pop-up menu can vary
depending on the context, or state, of the object.

An object whose instance data and state are p reserved
between system shutdown and system startup.

A control wi ndow that is used to d isplay the sett ings for

an object and to enable the user to change them .

Table 8-24 (Page 2 of 2) . Summary of Workplace Terms

Term

Shadow

Subclass

System Object Model
(SOM)

Template

View
Workplace Shell

Description

An object that refers to another object's data. A shadow
is not a copy of another object, but is another
representation of the object.

A class that i nherits the same characteristics and
behaviors of its parent, and has its own characteristics
and behaviors .

A mechanism that enables programmers t o use
object-oriented programm i ng techniques in a
language-i ndependent manner.

The pr imary user mechanism for creating new i nstances
of a Workplace object.

A way of l ook ing at an object's i nformation.

The OS/2 2.0 object-oriented , g raphical user interface.

Chapter 8. Workplace Prog ramming Interface 8-49

8-50 Appl ication Design Gu ide

Appendix A. Sample Programs Cross Index

The Toolkit p rovides sample programs that demonstrate how to use the OS/2 API
functions. The f i les that m ake up each sample program are located in specific
sample program d i rectories. The fol lowing tables shows the API functions, and the
sample program d i rectories (and thereby the sample programs) that demonstrate
the i r use. The API functions are broken down accord ing the fol l owing groups:

• Control program functions
• Device functions
• Di rect manipu lation functions
• G raphics programming i nterface functions
• P rofi le functions
• Window functions

Control Program Functions

The fol lowing tab le shows all the Control Program (Dos) functions in alphabetic
order.

Function Name 1 2 3 4 5 6 7 8 9 10 11 12 13 �4 15 1 6 17 18 19 20 21 22 23 24 25 26 27 �8
DosAIIocMem .j .j .j .j .j .j .j .j .j
DosAI IocSharedMem .j .j .j
DosAsyncTimer

' .j
DosBeep .j .j .j .j .j .j .j .j .j .j .j .j .j .j .j .j .j
DosCiose .j .j .j .j .j .j .j .j .j .j .j .j
DosCioseEventSem .j .j .j .j .j
DosCioseMutexSem .j .j .j .j
DosCioseMuxWaitSem .j
DosCioseQueue .j
DosConnectNP i pe .j
DosCopy .j
DosCreateEventSem .j .j .j .j .j .j .j .j .j .j
DosCreateM utexSem .j .j .j .j .j
DosCreateMuxWaitSem .j
DosCreateN P i pe .j
DosCreatePi pe .j
DosCreateQueue .j
DosCreateThread .j .j .j .j .j .j .j .j

1 ANI MALS 9 I MAGE 17 REXX\REXXSAMP\CALLREXX 25 CLOCK
2 CLI PBRD 10 I PF 18 REXX\REXXSAMP\DEV I N FO 26 TP

3 DIALOG 1 1 J IGSAW 19 REXX\REXXSAMP\RXMACDLL 27 VDD

4 DDLAPI 12 EAS 20 REXX\REXXSAMP\REXXUTI L 28 VMM

5 DRAGDROP 13 N P I P E 2 1 S EMAPH 29 WORMS

6 GRAPH I C 14 PRINT 22 SORT 3 0 WPCAR
7 HANOI 15 QUEUES 23 STYLE
8 HELLO 16 REXX\REXXSAMP\PMREXX 24 TEMPLATE

© Copyright IBM Corp. 1992

29 30
.j

.j .j

A-1

Function Name 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 �0
DosDelete J J
DosDevConfi g J
DosDisConnectNPi pe J
DosDupHandle J
DosEnterCritSec J J J J J
DosEnumAttri bute J
DosErrCiass J
DosError J J J
DosExecPgm J J
DosExit J J J J J J J J J J J J J J J J
DosExitCritSec J J J J
DosExitlist J J J J
DosFi ndCiose J J
DosFi ndFi rst J J J J J J
DosFindNext J J J J
DosFreeMem J J J J J J J J J J J J
DosFreeModule J
DosGetDateTi me J J J
DosGetlnfoBiocks J J J J J J J J J J
DosGetMessage J J
DosGetNamedSharedMem J
DosGiveSharedMem J
DosLoadModule J J
DosMove J
DosOpen J J J J J J J J J J J
DosOpenQueue J
DosPostEventSem J J J J J J J J J J
DosQueryCtrylnfo J J J
DosQueryCurrentDir J J J
DosQueryCurrentDisk J J J J
DosQueryEventSem J J
DosQueryFHState J
DosQueryFi lelnfo J J J J

1 AN IMALS 9 IMAGE 17 REXX\REXXSAMP\CALLREXX 25 CLOCK

2 C L I PBRD 10 I P F 18 REXX\REXXSAMP\DEV I N FO 26 TP

3 D IALOG 1 1 J IGSAW 19 REXX\REXXSAMP\RXMACDLL 27 VDD

4 DDLAPI 12 EAS 20 REXX\REXXSAMP\REXXUTI L 28 VMM

5 DRAGDROP 13 N P I PE 21 SEMAPH 29 WORMS

6 GRAPH I C 1 4 PRINT 22 SORT 30 WPCAR

7 HANOI 15 QUEUES 23 STYLE
8 HELLO 16 REXX\REXXSAMP\PMREXX 24 TEMPLATE

A-2 Appl ication Design Guide

Function Name 1 2 3 4 5 6 7 8 9 10 1 1
DosQueryFSAttach

DosQueryFSinfo

DosQueryMem

DosQueryPath l nfo

DosQuerySysl nfo

DosRead -/ -/ -/
DosReadQueue

DosReleaseM utexSem -/ -/
DosRequestM utexSem ,j -/
DosResetEventSem ,j -/
DosResumeTh read

DosSearchPath

DosSetCurrentD i r -/ -/
DosSetDateTime

DosSetDefau ltDisk -/
DosSetExceptionHandler -/
DosSetFHState

DosSetFi le lnfo

DosSetMem -/
DosSetPath l nfo

DosSetPriority -/ -/
DosSieep

DosStartTimer

DosStopTimer

DosSubAI IocMem J
DosSubFreeMem -/
DosSubSetMem -/
DosSuspendTh read -/
DosUnsetExceptionHandler -/
DosWaitEventSem J J
DosWaitM uxWaitSem

DosWaitNP i pe

DosWaitThread -/ -/

1 AN I MALS 9 IMAGE 1 7

2 CLI PBRD 10 I PF 18

3 DIALOG 1 1 J IGSAW 19

4 DDLAPI 12 EAS 20

5 DRAGDROP 13 N P I P E 2 1

6 GRAPH I C 14 PRI NT 22
7 HANOI 15 QUEUES 23
8 HELLO 16 REXX\REXXSAMP\PMREXX 24

1 2 1 3 14 15 16 1 7 18 19 20 21 22 23 24 25 26 27 28 29 �0
-/
-/

-/
-/ -/ -/

-/
-/ -/ -/ -/

-/
-/ -/ -/
-/ -/ ,j

-/ -/ -/ -/ -/ -/
-/ -/

-/ -/
-/

-/

-/
-/

-/
-/ -/
-/

-/ -/
-/ -/ -/ -/ -/ -/ -/

-/
-/

-/
-/
-/

-/ -/
J

-/ -/ -/ J -/ J J
J

J
J -/ J

REXX\REXXSAMP\CALLREXX 25 CLOCK
REXX\REXXSAMP\DEV INFO 26 TP
REXX\REXXSAMP\RXMACDLL 2 7 VDD
REXX\REXXSAMP\REXXUTI L 28 VMM
S EMAPH 29 WORMS
SORT 30 WPCAR
STYLE
TEMPLATE

Appendix A. Sample Pr<>grams Cross Index A·3

Function Name 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 1 6 17 18 19 20 21 22 23 24 25 26 27 28 29 30
DosWrite .j .j .j
DosWriteQueue .j

1 ANI MALS 9 IMAGE 1 7 REXX\REXXSAMP\CALLREXX 25 CLOCK
2 CLI PBRD 10 I P F 1 8 REXX\REXXSAMP\DEV I N FO 26 TP
3 D IALOG 1 1 J IGSAW 19 REXX\REXXSAMP\RXMACDLL 27 VDD
4 DDLAPI 12 EAS 29 REXX\REXXSAMP\REXXUTI L 28 VMM
5 DRAGDROP 13 N P I P E 2 1 SEMAPH 29 WORMS
6 GRAPH I C 14 PRINT 22 SORT 39 WPCAR
7 HANOI 15 QUEUES 23 STYLE
8 HELLO 16 REXX\REXXSAMP\PMREXX 24 TEMPLATE

A-4 Application Design Guide

Device Functions

The fol lowi ng table shows all the Device (Dev) functions in alphabetic order.

Function Name 1 2 3 4 5 6 7 8 9 10 1 1

DevCioseDC .j .j .j .j
DevEscape .j
DevOpenDC .j .j .j .j
DevPostDeviceModes .j
DevQueryCaps .j

1 AN I MALS 9 I MAGE 1 7

2 CLI PBRD Hl I P F 18

3 D IALOG 1 1 J IGSAW 19

4 DDLAPI 12 EAS 29

5 DRAGDROP 13 N P I P E 2 1

6 GRAPH I C 1 4 P R I NT 22

7 HANOI 15 QUEUES 23

8 HELLO 16 REXX\REXXSAMP\PMREXX 24

1 2 13 14 15 16 17 18 19 20 �1 22 � 24 25 26 27 28 29 �0

.j .j .j
.j .j
.j .j .j
.j
.j .j .j

REXX\REXXSAMP\CALLREXX 25 CLOCK
REXX\REXXSAMP\OEV I N FO 26 TP
REXX\REXXSAMP\RXMACDLL 27 VDD
REXX\REXXSAMP\REXXUTI L 28 VMM
S EMAPH 29 WORMS
SORT 39 WPCAR
STYLE
TEMPLATE

Appendix A. Sample Programs Cross Index A-5

Direct Manipulation Functions

This section descri bes functions that an appl ication would use to i n it iate or
partici pate in a d i rect manipu lation operation. The fol lowing table shows al l the
di rect manipu lation (Drg) functions in alphabetic order.

Function Name 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 �9
DrgAccessDragi nfo ..;
DrgAddStrHandl e ..;
DrgAI IocDragi nfo ..;
DrgAI IocDragtransfer ..;
DrgDeleteDraginfoStrHandl es ..;
DrgDrag ..;
DrgFreeDragi nfo ..;
DrgFreeDragtransfer ..;
DrgQueryDragitem ..;
DrgQueryDragitemCount ..;
DrgQueryDragitemPtr ..;
DrgQueryStrName ..;
DrgSendTransferMsg ..;
DrgSetDragltem ..;
DrgVerifyRM F ..;

1 AN IMALS 9 IMAGE 1 7 REXX\REXXSAMP\CALLREXX 25 C LOCK
2 CLI PBRD Hl I P F 18 REXX\REXXSAMP\DEV I N FO 26 TP
3 D IALOG 1 1 J IGSAW 19 REXX\REXXSAMP\RXMACDLL 2 7 VDD
4 DDLAPI 12 EAS 20 REXX\REXXSAMP\REXXUTI L 28 VMM
5 DRAGDROP 13 N P I PE 2 1 SEMAPH 29 WORMS
6 GRAPH I C 1 4 PRINT 22 SORT 30 WPCAR
7 HANOI 15 QUEUES 23 STYLE
8 HELLO 16 REXX\REXXSAMP\PMREXX 24 TEMPLATE

A-6 Appl ication Design Guide

30

GPI Functions by Functional Area

The fol lowi ng table shows how al l of the Graphics Programming I nterface (GPI)
functions are related with i n functional areas. The functions are i n alphabetic order
with i n these areas.

Function Name 1 2 3 4 5 6 7 8 9 10 1 1 1 2 3 14 15 6�7 18 19�0 21 j22 23 24�5 26�7�8�9�0
Curve Functions

Prim itive Functions

GpiFui iArc .j .j .j
Bit-Map Support

Creation and Selection Functions

GpiCreateBitmap .j .j .j .j .j
Gpi DeleteBitmap .j .j .j .j .j .j
Gpi LoadB itmap .j .j .j
GpiSetBitmap .j .j .j .j .j

Operations on Raw Bit Maps

GpiQueryBitmaplnfoHeader .j
GpiQueryBitmapParameters .j .j
GpiQueryDeviceBitmapFormats .j
GpiSetBitmapBits .j .j

Operations through Presentation Spaces

G p i B itBit .j .j .j .j
GpiQueryPel .j

Character Functions
Attri bute Sett ing Functions

GpiQueryCharBox .j .j .j
GpiSetCharBox .j .j
GpiSetCharMode .j .j
GpiSetCharSet .j .j

Prim itive Functions

GpiCharString .j .j
GpiCharStri ngAt .j .j .j .j .j .j .j .j .j .j .j .j
GpiCharStri n gPosAt .j
GpiQueryCharStringPos .j

1 ANI MALS 9 I MAGE 1 7 REXX\REXXSAMP\CALLREXX 25 CLOCK

2 CLI PBRD 19 I PF 18 REXX\REXXSAMP\DEV I N FO 26 TP

3 D IALOG 1 1 J IGSAW 19 REXX\REXXSAMP\RXMACDLL 27 VDD

4 DDLAPI 12 EAS 29 REXX\REXXSAMP\REXXUTI L 28 VMM

5 DRAGDROP 13 N P I P E 2 1 SEMAPH 29 WORMS

6 GRAPH I C 14 PRINT 22 SORT 39 WPCAR

7 HANOI 15 QUEUES 23 STYLE
8 HELLO 16 REXX\REXXSAMP\PMREXX 24 TEMPLATE

Appendix A. Sample Programs Cross Index A-7

Function Name 1 2 3 4 s & 1 a a pop1 p2 13�4 15 &p7papaj2oj21-��;1 .1 .. 7 'r"'
Resources and Defaults Functions

GpiCreatelogFont .j .j .j
G p i DeleteSetld .j .j
GpiQueryCp .j
GpiQueryFontMetrics .j .j .j .j .j .j .j
GpiQueryFonts .j .j

Color and Mix Functions

Attribute Setting Functions

GpiQueryColor .j .j
GpiSetBackColor .j .j .j
GpiSetBackMix .j .j .j
GpiSetColor .j .j .j .j .j .j .j .j .j .j .j
GpiSetM ix .j

Resources and Default Functions

GpiCreatelogColorTable .j
GpiQueryColorlndex .j
GpiQueryRGBColor .j

Control Functions

GpiAssoclate .j .j .j .j .j .j
GpiCreatePS .j .j .j .j .j .j .j
Gpi DestroyPS .j .j .j .j .j .j .j
GpiQueryDevice .j .j
GpiResetPS .j .j .j
Gpi RestorePS .j
GpiSavePS .j
GpiSetPS .j

Correlation and Boundary Determination Functions
Bounds Data Functions

GpiQueryBoundaryData .j .j
GpiResetBoundaryData .j .j

Drawing Functions

G p i E rase .j .j .j .j .j .j .j
GpiQueryStop Draw .j .j

1 AN I MALS 9 I MAGE 17 REXX\REXXSAMP\CALLREXX 25 C LOCK
2 CLI PBRD 19 I P F 18 REXX\REXXSAMP\DEV I N FO 26 TP

3 D IALOG 1 1 J IGSAW 19 REXX\REXXSAMP\RXMACDLL 27 VDD

4 DDLAPI 1 2 EAS 29 REXX\REXXSAMP\REXXUTI L 28 VMM

5 DRAGDROP 13 N P I P E 2 1 SEMAPH 29 WORMS

6 GRAPHI C 1 4 PRINT 22 SORT 39 WPCAR

7 HANOI 15 QUEUES 23 STYLE
8 HELLO 16 REXX\REXXSAMP\PMREXX 24 TEMPLATE

A-8 Application Design Guide

Function Name

GpiSetDrawControl

GpiSetStopDraw

GpiPop

GpiQueryAttrMode

GpiSetAttrMode

GpiSetAttrs

G p i l mage

GpiQuerylineType

GpiSetl i neType

Gpi Box

Gpil ine

GpiMove

GpiPolyline

GpiQueryCurrentPosit ion

GpiSetCu rrentPosit ion

GpiCopyMetaFi l e

Gpi DeleteM etaFi le

GpiLoadM etaFi l e

Gp iPiayMetaFi l e

GpiSetC i i pPath

GpiBeg i n Path

1 AN I MALS 9

2 CLI PBRD H:l
3 DIALOG 1 1

4 DDLAP I 12

5 DRAGDROP 13

6 GRAPH I C 1 4

7 HANO I 15

8 HELLO 16

1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 �9 20 21 �2 23 24 25 �6 27 �8 �9 30

.j .j
.j .j

General AHrlbute Functions

Attri bute Mode Functions

.j .j
.j .j
.j .j .j

Attri bute Str ip Sett ing Functions

.j .j
Image Functions

Pr im itive Functions

.j
Line Functions

Attri bute Sett ing Functions

.j
.j

Prim itive Functions

.j .j .j .j
.j .j .j .j

.j .j .j .j
.j

.j .j
.j .j .j .j .j

Metafile Support

.j
.j .j
.j .j
.j .j

Path Functions

Path C l i pp ing Functions

.j
Path Defin it ion and Deletion Functions

.j .j

IMAGE 17 REXX\REXXSAMP\CALLREXX 25 C LOCK
I P F 18 REXX\REXXSAMP\DEV I N FO 26 TP
J IGSAW 19 REXX\REXXSAMP\RXMACDLL 27 VDD
EAS 29 REXX\REXXSAMP\REXXUTI L 28 VMM

N P I PE 21 S EMAPH 29 WORMS

P R I NT 22 SORT 39 WPCAR

QUEUES 23 STYLE
REXX\REXXSAMP\PMREXX 24 TEMPLATE

Appendix A. Sample Programs Cross Index A-9

Function Name 1 2 3 4 5 6 7 8 9 1 0 1 1 12 13 14 1 5 1 6 17 18 19 20 21 22 23 24 25 ,26 27 �8 29 30
GpiCioseFig u re J
GpiEndPath J J

Path Drawing Functions

GpiF i i i Path J J
Region Support

C l i pping Region Functions

GpiSetC i ipRegion J J J
Drawing Functions

GpiPai ntRegion J J J
Region Functions

GpiCombineRegion J J J
GpiCreateRegion J J J
Gpi DestroyRegion J J J
GpiQueryRegionBox J
GpiSet Region J

Transform Functions
Conversion Functions

GpiConvert J J J
Device Transforms

GpiSetPageVi ewport J
Helper Functions

GpiScale J J
GpiTranslate J J

M odel l ing Transform Functions

GpiSetModeiTransformMatrix J
Viewing Transform Functions

GpiQueryDefaultViewMatrix J J J
GpiSetDefaultViewMatrix J J J J

1 AN IMALS 9 IMAGE 17 REXX\REXXSAMP\CALLREXX 25 C LOCK
2 CLI PBRD 10 I P F 18 REXX\REXXSAMP\DEV I N FO 26 TP

3 D IALOG 1 1 J I GSAW 19 REXX\REXXSAMP\RXMACDLL 27 VDD

4 DDLAPI 12 EAS 20 REXX\REXXSAMP\REXXUTI L 28 VMM

5 DRAGDROP 13 N P I P E 2 1 SEMAPH 29 WORMS

6 GRAPHIC 14 PRINT 22 SORT 30 WPCAR

7 HANOI 15 QUEUES 23 STYLE
8 HELLO 16 REXX\REXXSAMP\PMREXX 24 TEMPLATE

A-1 0 Appl ication Design Guide

Profile Functions

The fol lowing table shows all the Profi le (Prf) functions in alphabetic order.

Function Name 1 2 3 4 5 6 7 8 9 10 1 1
PrfCioseProf i l e

P rfOpenProfi l e

PrfQueryProfi l e

PrfQueryProfi l eData

PrfQueryProfi l e l nt

PrfQueryProfi l eSize ,j
PrfQueryProfi l eStr ing ,j
PrfWriteProf i leData

1 ANIMALS 9 I MAGE 1 7

2 CLI PBRD Hl I P F 18

3 DIALOG 1 1 J IGSAW 19

4 DDLAPI 12 EAS 20

5 DRAGDROP 13 N P I P E 2 1

6 GRAPH I C 1 4 PRINT 22

7 HANOI 15 QUEUES 23

8 HELLO 1 6 REXX\REXXSAMP\PMREXX 24

1 2 13 14 1 5 16 17 18 19 20 21 22 23 24 25 26 27 28 29 �0

,j ,j
,j ,j

,j
,j ,j ,j ,j

,j
,j
,j ,j
,j ,j ,j ,j

REXX\REXXSAMP\CALLREXX 25 CLOCK
REXX\REXXSAMP\DEV I N FO 26 TP
REXX\REXXSAMP\RXMACDLL 27 VDD
REXX\REXXSAMP\REXXUTI L 28 VMM
S EMAPH 29 WORMS
SORT 30 WPCAR
STYLE
TEMPLATE

Appendix A. Sample Programs Cross Index A-11

Window Functions by Functional Area

The fol lowi ng table shows how al l of the Wi ndow (WIN) functions are related with i n
functional areas. The functions are i n alphabetic order with i n these areas.

Function Name 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15�6 17 18 19�0 21 �223 24�5 26 27 28 29�0
Accelerators

W i nloadAcceiTabl e .J
WinSetAcceiTable .J

Alarms
Wi nAiarm .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J
W i n M essageBox .J

Clipboard
WinCioseC i i pbrd .J .J .J
Wi nOpenC i i pbrd .J .J .J
WinQueryCi i pbrdData .J .J
WinQueryC i i pbrd Fmtlnfo .J .J
Wi nSetC i i pbrd Data .J .J

Coordinate Mapping
WinMapDigPoi nts .J
W i n MapWi ndowPoi nts .J .J .J .J .J .J

Dialog Boxes
WinDefDigProc .J
WinDefFi leDigProc .J .J .J .J .J .J
WinDefFontDigProc .J
WinDism issDig .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J
WinDigBox .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J
WinFi l eDig .J .J .J .J .J .J .J
WinFontDig .J .J .J
WinloadDig .J

Drawing Management

Drawing

W i n Begi n Paint .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J
WinEnableWi ndowUpdate .J .J .J .J
WinEndPaint .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J .J

1 AN I MALS 9 I MAGE 17 REXX\REXXSAMP\CALLREXX 25 CLOCK
2 CLI PBRD Hl I P F 18 REXX\REXXSAMP\DEV I N FO 26 TP
3 DIALOG 1 1 J IGSAW 19 REXX\REXXSAMP\RXMACDLL 27 VDD
4 DDLAPI 12 EAS 20 REXX\REXXSAMP\REXXUTI L 28 VMM
5 DRAGDROP 13 N P I P E 2 1 SEMAPH 29 WORMS
6 GRAPH I C 1 4 PRINT 22 SORT 30 WPCAR
7 HANOI 15 QUEUES 23 STYLE
8 HELLO 16 REXX\REXXSAMP\PMREXX 24 TEMPLATE

A-1 2 Appl ication Design Guide

Function Name

WinGetPS

WinGetScreenPS

W i n l nval idateRect

W i n lnval idateRegion

Wi nOpenWi ndowDC

Wi nQueryUpdateRect

Wi nQueryUpdateReg ion

WinReleasePS

Wi nShowWi ndow

WinUpdateWi ndow

Wi nVal idateRect

Wi nVal idateReg ion

W i nDrawBitmap

WinDrawBorder

WinDrawPoi nter

WinDrawText

WinFi i i Rect

W i n lnvertRect

Wi nQueryPresParam

W i nRemovePresParam

WinScroi iWi ndow

Wi nSetPresParam

WinFreeErrorlnfo

WinGetErrorlnfo

WinGetlastError

WinAssociateHelplnstance

WinCreateHel p lnstance

WinDestroyHe l p lnstance

W i n l n it ial ize

1 AN IMALS 9

2 CLI PBRD 10

3 D IALOG 1 1

4 DDLAPI 12

5 DRAGDROP 13

6 GRAPH I C 1 4

7 HANOI 15

8 HELLO 16

1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 1 4 15 16 17 18 19 20 21 22 123 24 25 26 27 28 29 �0

J J J J J J J J J J J J J
J

J J J J J J J J J J J J J J J
J J J J

J J J J J J J
J

J J J
J J J J J J J J J J J J J

J J J J J
J J J J

J
J J J

Drawing Hel pers

J J J J
J J

J
J

J J J J J J J J J J J J J J
J

J
J

J J J J
J

Error Processing

J J J J
J J J J

J J J '

Help Manager

J J J J J J J J J J J J J J J J J
J J J J J J J J J J J J J J J J J
J J J J J J J J J J J J J J J J J
Initialization and Termination

J J J J J J J J J J J J J J J J J J J J J

I MAGE 17 REXX\REXXSAMP\CALLREXX 25 CLOCK
I PF 18 REXX\REXXSAMP\DEV I N FO 26 TP
J IGSAW 19 REXX\REXXSAMP\RXMACDLL 27 VDD
EAS 20 REXX\REXXSAMP\REXXUTI L 28 VMM
N P I P E 21 SEMAPH 29 WORMS
PRINT 22 SORT 30 WPCAR
QUEUES 23 STYLE
REXX\REXXSAMP\PMREXX 24 TEMPLATE

Appendix A. Sample Programs Cross Index A-1 3

Function Name 1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 j3o
Wi nQuery AnchorBiock ,j ,j ,j ,j

Keyboard
WinGetKeyState ,j
WinQueryFocus ,j ,j ,j
WinSetFocus ,j ,j ,j ,j ,j ,j ,j ,j

List Box
WinDeleteLboxltem ,j
W i n lnsertlboxltem ,j
Wi nQueryLboxCou nt ,j
Wi nQueryLboxltemText ,j

Menus
W i nEnableMenultem ,j
WinLoadMenu ,j ,j
WinPopupMenu ,j

Message Management

WinCreateMsgQueue ,j
WinDestroy MsgQueue ,j
W i nDispatchMsg ,j
W i nGetMsg ,j
W i nLoadMessage ,j ,j ,j ,j ,j ,j ,j ,j ,j ,j ,j ,j ,j
W i n PeekMsg ,j ,j ,j
WinPostMsg ,j ,j ,j ,j ,j ,j ,j ,j ,j ,j ,j ,j ,j ,j ,j ,j ,j ,j ,j
WinPostQueueMsg ,j ,j ,j
Wi nSendDig ltem Msg ,j ,j ,j ,j ,j ,j ,j ,j ,j ,j ,j ,j
Wi nSendMsg ,j

Mouse Capture

Wi nQueryCapture ,j
WinSetCapture ,j

Mouse Tracking

Wi nShowTrackRect

Wi nTrackRect ,j ,j ,j
Pointer

WinDestroyPoi nter ,j ,j

1 AN I MALS 9 I MAGE 17 REXX\REXXSAMP\CALLREXX 25 CLOCK

2 CLI PBRD 10 I P F 18 REXX\REXXSAMP\DEV I N FO 26 TP

3 D IALOG 1 1 J IGSAW 19 REXX\REXXSAMP\RXMACDLL 27 VDD

4 DDLAPI 12 EAS 20 REXX\REXXSAMP\REXXUTI L 28 VMM

5 DRAGDROP 13 NPIPE 2 1 SEMAPH 29 WORMS
6 GRAPH I C 1 4 P R I NT 22 SORT 30 WPCAR

7 HANOI 15 QUEUES 23 STYLE
8 HELLO 16 REXX\REXXSAMP\PMREXX 24 TEMPLATE

A-1 4 Application Design Guide

Function Name

WinloadPoi nter

WinQueryPoi nter

Wi nQueryPointerPos

WinQuerySysPointer

Wi nSetPoi nter

Wi nShowPointer

WinCopyRect

W i n lntersectRect

W i n lsRectEm pty

Wi nOffsetRect

WinPtlnRect

Wi nSetRect

WinUnion Rect

WinCalcFrameRect

WinCreateStdWi ndow

WinLoadStri ng

Wi nSetCp

Wi nAddSwitchEntry

Wi nChangeSwitchEntry

Wi nQuerySwitchEntry

Wi nQuerySwitchHandl e

Wi nQueryTaskSizePos

Wi nQueryTaskTitle

WinRemoveSwitchEntry

Wi nQuerySysVal ue

Wi nStartTimer

WinStopTimer

1 AN I MALS 9

2 CLI PBRD 10

3 D IALOG 1 1

4 DDLAP I 12

5 DRAGDROP 13

6 GRAPH I C 14

7 HANOI 15

8 HELLO 16

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 1 5 1 6 17 18 1 9 20 21 22 23 24 25 �6 27 28 29 �0

..; ..; ..;
..; ..; ..;
..; ..; ..;

..; ..; ..; ..; ..; ..;
..; ..; ..; ..; ..; ..;

..;
Rectangles

..;
..;

..;
..;

..; ..; ..; ..;
..; ..;

..;
Standard Window

..;
..;

String/Character and Code Pages

..;
..;

Task List

..; ..; ..; ..;
..; ..;

..;
..;

..; ..;
..;

..; ..;
System Values

..; ..; ..; ..; ..; ..; ..;
Timers

..; ..; ..; ..; ..; ..; ..;
..; ..; ..; ..; ..; ..;

I MAGE 17 REXX\REXXSAMP\CALLREXX 25 CLOCK
I P F 18 REXX\REXXSAMP\DEV I N FO 26 TP

J IGSAW 19 REXX\REXXSAMP\RXMACDLL 27 VDD

EAS 20 REXX\REXXSAMP\REXXUTI L 28 VMM
N P I P E 2 1 S EMAPH 29 WORMS

PRINT 22 SORT 30 WPCAR

QUEUES 23 STYLE
REXX\REXXSAMP\PMREXX 24 TEMPLATE

Appendix A. Sample Programs Cross Index A-1 5

Function Name 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Window Management

Activation, Size and Position

Wi nQueryWi ndowPos ..; ..; ..; ..; ..; ..;
Wi nSetActiveWindow ..;
Wi nSetMultWi ndowPos ..;
WinSetWindowPos ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..;

Creation and Class I nformation

WinCreateWi ndow ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..;
W i nDefWindowProc ..;
W i nDestroyWi ndow ..;
W i n RegisterCiass ..;
Wi nSubclassWindow ..; ..; ..; ..;

General Wi ndow I nformation

WinEnableWindow ..; ..; ..; ..; ..; ..; ..; ..;
WinlsWindow ..; ..; ..; ..; ..; ..; ..;
WinQueryWi ndowDC ..; ..;
Wi nQueryWi ndowProcess ..; ..; ..; ..; ..;
Wi nQueryWi ndowRect ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..;
WinWi ndowFro m i D ..; ..; ..; ..; ..; ..; ..; ..; ..;

Window H ierarchies

W i n lsChi ld ..;
Wi nQueryWi ndow ..; ..; ..; ..; ..; ..; ..; ..; ..; ..;
Wi nSetParent ..; ..;

Window Text

Wi nQueryDigltemShort ..; ..; ..;
WinQueryDig ltemText ..; ..; ..; ..;
Wi nQueryWi ndowText ..; ..; ..; ..; ..; ..; ..; ..;
WinSetDig ltemShort ..; ..; ..;
Wi nSetDi g ltemText ..; ..; ..; ..; ..; ..; ..; ..; ..; ..;
Wi nSetW i ndowText ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..; ..;

Window Words

Wi nQueryWi ndowPtr ..; ..; ..;
WinQueryWi ndowULong ..; ..; ..;

1 AN I MALS 9 I MAGE 1 7 REXX\REXXSAMP\CALLREXX 25 C LOCK

2 C L I PBRD 10 I PF 18 REXX\REXXSAMP\DEV I N FO 26 TP

3 D IALOG 1 1 J IGSAW 19 REXX\REXXSAMP\RXMACDLL 27 VDD

4 DDLAPI 12 EAS 20 REXX\REXXSAMP\REXXUTI L 28 VMM

5 DRAGDROP 13 NPIPE 21 SEMAPH 29 WORMS
6 GRAPHI C 1 4 PRINT 22 SORT 30 WPCAR

7 HANOI 15 QUEUES 23 STYLE
8 H ELLO 16 REXX\REXXSAMP\PMREXX 24 TEMPLATE

A·1 6 Application Design Guide

Function . Name 1 2 3 4 5 6 7 8 9 1 0 � 1

W i nQueryWindowUShort .j
WinSetWindowPtr .j
WinSetWindowULong .j
Wi nSetWindowUShort

1 ANI MALS 9 IMAGE 1 7

2 CLI PBRD 19 I P F 1 8

3 D IALOG 1 1 J IGSAW 19

4 DDLAPI 1 2 EAS 29

5 DRAGDROP 13 NPI PE 2 1

6 GRAPHI C 1 4 PRI NT 22

7 HANOI 15 QUEUES 23

8 H ELLO 16 REXX\REXXSAMP\PMREXX 24

1 2 13 �4 1 5 16 �7 18 �9 20 21 � 23 27 �8 29 �0
.j .j .j .j

.j .j
.j

.j .j

REXX\REXXSAMP\CALLREXX 25 C LOCK
REXX\REXXSAMP\DEVI N FO 26 TP
REXX\REXXSAMP\RXMACDLL 27 VDD
REXX\REXXSAMP\REXXUTI L 28 VMM
SEMAPH 29 WORMS
SORT 39 WPCAR
STYLE
TEMPLATE

Appendix A. Sample Programs Cross Index A-1 7

-.

A-1 8 Application Design Guide

Index

A
accelerator table 1 -2 1
access I nstance data, S O M macros 7-1 7
accessing data, SOM 7-20
active wi ndow 1 - 1 9
address format

segment:offset 6-1
selector:offset 6-1

anchor b lock 3-4
anchor-block handl e 3-4
app l ication compati b i l ity 6-5
appl ication queue 1 -20
appl ication resou rces 1 -21
appl ication restrictions 6-9
appl icati on-control l ed viewports 4-40
appl ication-generated data exchange 1 -23
appl ication-oriented user envi ronments 8-1
arc 1 -25
area 1 -25
asynchronous comm u nications BIOS functions 6-1 5
avai lable f i le handl es 4-34
ava i l able memory 4-1 1

B
BadDynlink 4-29
base extender functions 6-1 2
bi-modal device dr iver code 6-3
b imodal device drivers 1 -2
B IOS 6-1 5
bit map 1 -21 , 1 -26, 4-51
B KM_CALCPAG E RECT 4-45
B KM_DELETEPAGE 4-45
B KM_INSERTPAGE 4-45
BKM_INVALI DATETABS 4-45
BKM_QUERYPAGECOUNT 4-45
B KM_QUERYPAGEI D 4-45
B K M_QUERYPAGEULONG 4-45
BKM_QU ERYPAGEWI NDOWHWND 4-45
B KM_QUERYTABBITMAP 4-45
BKM_QU ERYTABTEXT 4-45
B KM_SETDIM E NSIONS 4-45
B KM_SETPAGEULONG 4-45
B KM_SETPAGEWINDOWHWND 4-45
BKM _ SETSTATUSLINETEXT 4-45
B KM_SETTABBITMAP 4-45
B KM_SETTABTEXT 4-45
B KM_TURNTOPAGE 4-45
B KN_NEWPAGESIZE 4-45
BKN_PAGESELECTED 4-45
B KS_BACKPAGESBL 4-44
B KS_BACKPAGESBR 4-44

© Copyright IBM Corp. 1992

BKS_BACKPAGESTL 4-44
BKS_BACKPAGESTR 4-44
BKS_MAJORTABBOTTOM 4-45
B KS_MAJORTABLEFT 4-45
BKS_MAJORTABRIGHT 4-45
BKS_MAJORTABTOP 4-45
B KS_POL YGONTABS 4-45
BKS_ROUNDEDTABS 4-45
BKS_SQUARETABS 4-45
BKS_STATUSTEXTCENTER 4-45
BKS_STATUSTEXTLEFT 4-45
BKS_STATUSTEXTRIGHT 4-45
b lock device 1 - 1 2
bu i ld ing a class l i b rary, . DEF 7-1 2
bus i nterface unit 2-2
byte-addressable segment 2-1 4

c
C program template for c lass i mplementation, .C 7-1 2
caching mechanisms

Translation Lookaside Buffer (TLB) 2-7
calli ng 1 6-bit code, l i n kage conventions 3-1 9
character device 1 -9 , 1 - 1 2
Character Output, S O M 7-1 9
CheckMsgFi lte rHook 4-51
chi ld class 7-4
ch i ld process 1 -6
c lass 7-4
class defi nit ion f i le

class section 7-7
Comments 7-1 0
data section 7-7
i nc l ude section 7-7
metaclass section 7-7
methods section 7-7
parent c lass section 7-7
passthru section 7-7
release order section 7-7 , 7-8

class h ierarchy, Workplace objects 8-8
class i m plementation

.C, SOM C-language b inding fi l e 7-1 2

. I H , i mplementation header f i le 7-1 2

.SC, publ ic class i m plementation f i le 7-1 2
class i m plementation fi le , . I H 7-22
class l i braries, SOM 7-32
Class List Uti l ity, Workplace 8-45
class method 7-5
class object 7-4, 7-5
c lass section, class defi n ition fi le 7-7
class-specific SOM M acros 7-1 6
classes of user i nterface objects

container object 8-3
data object 8-3

X-1

classes of user i nterface objects (continued)
device object 8-3

CLASSFIELDINFO 8-24
c l ient appl ications, SOM 7-6
c l ient process 1 - 1 0
c l i ent program , SOM 7-1 2 , 7-23, 7-26
c l i pboard 1 -22
c l i pped wi ndow 1 - 1 4
cl i pp ing 1 -27
Clock object 8-7
CLSSTYLE_NEVERCOPY 8-36
CLSSTYLE_NEVERDELETE 8-36
CLSSTYLE_NEVERDRAG 8-36
CLSSTYLE_NEVERMOVE 8-36
CLSSTYLE_NEVERPRINT 8-36
CLSSTYLE_NEVERRENAME 8-36
CLSSTYLE_NEVERSHADOW 8-36
CLSSTYLE_NEVERTEM PLATE 8-36
CLSSTYLE_NEVERVISIBLE 8-36
CMOS/Real Time Clock 6-1 5
CM_ALLOCDETAILFIELDINFO 4-47
CM_ALLOCRECORD 4-47
CM_ARRANGE 4-47
CM_CLOSEEDIT 4-47
CM_ERASERECORD 4-47
CM_FIL TER 4-47
CM_FREEDETAILFIELDINFO 4-47
CM_FREERECORD 4-47
CM_HORZSCROLLSPLITWINDOW 4-47
CM_INSERTDETAILFIELDINFO 4-47
CM_INSERTRECORD 4-47
CM_I NVALI DATEDETAILFIELDIN FO 4-47
CM_I NVALI DATERECORD 4-47
CM_OPENEDIT 4-47
CM_PAI NTBACKGROUND 4-47
CM_QUERYCNRINFO 4-47
CM_ QUERYDETAILFIELDINFO 4-47
CM_QUERYDRAGI M AG E 4-47
CM_QUERYRECORD 4-47
CM_QUERYRECORDEMPHASIS 4-47
CM_QUERYRECORDFROM RECT 4-47
CM_QUE RYRECORDRECT 4-47
CM_QU ERYVIEWPORTRECT 4-47
CM_REMOVEDETAILFIELDINFO 4-47
CM_RE M OVERECORD 4-47
CM_SCROLLW I N DOW 4-47
CM_SEARCHSTRING 4-47
CM_SETCNRINFO 4-47
CM_SETRECORDEMPHASIS 4-47
CM_SORTRECORD 4-47
CN_DRAGAFTER 4-46
CN_DRAGLEAVE 4-46
CN_DRAGOVER 4-46
CN_DROP 4-46
CN_DROPHELP 4-46
CN_EM PHASIS 4-46
CN_ENDEDIT 4-46

X-2 Appl ication Design Guide

CN_ENTER 4-46
CN_IN ITDRAG 4-46
CN_KILLFOCUS 4-46
CN_QUERYDELTA 4-46
CN_REALLOCPSZ 4-46
CN_SCROLL 4-46
CN _ SETFOCUS 4-46
CODE attr ibutes

LOADONCALL 5-6
PRELOAD 5-6

code page management 4-34
code prefetch un i t 2-2
code segment 2-6

a l lowable types 2-8
defi n i ng 5-1 3

CODE statement, module-def in ition f i l e 5-6
col l i d i ng method names 7-1 7
color i ndex 1 -26
Color Palette object 8-7
COM 6-1 5
com ments , c lass defi nit ion f i le 7-1 0
compaction 4-1
compati b i l ity reg ion 3-1 6
compati b i l ity, SOM 7-8
compi ler support 3-1 1
comp i l i ng a program

us ing the /Gt + option 3-1 0
using the /Sp option 3-23
using the /Sp2 option 3-23

com posed view of objects 8-2
concurrent DOS sessions 6-5

l i mi t 6-5
CONCURRENTVI EW 8-34
conditional cascade menus 8-1 2
CONFIG.SYS 6-7, 6-9
constructor, c lass 7-5
container control wi ndow 8-23
container object 8-3
container wi ndow control 4-45

messages
CM_ALLOCDETAILFIELDI N FO 4-47
CM_ALLOCRECORD 4-47
CM_ARRANGE 4-47
CM_CLOSEEDIT 4-47
CM_ERASERECORD 4-47
CM_FIL TER 4-47
CM_FREEDETAILFIELDINFO 4-47
CM_FREERECORD 4-47
CM_HORZSCROLLSPLITWINDOW 4-47

CM_INSERTDETAILFIELDINFO 4-47
CM_I NSERTRECORD 4-47
CM_INVALI DATEDETAILFIELDINFO 4-47
CM_INVALI DATERECORD 4-47
CM_OPENEDIT 4-47
CM_PAINTBACKGROUN D 4-47
CM_QUERYCNRINFO 4-47
CM_ QUERYDETAILFIELDINFO 4-47
CM_QUERYDRAGI M AG E 4-47
CM_QUERYRECORD 4-47

container wi ndow control (continued)
messages (continued)

CM_QUERYRECORDEM PHASIS 4-47
CM_QUERYRECORDFROM RECT 4-47
CM_QUERYRECORDRECT 4-47
CM_QUERYVIEWPORTRECT 4-47
CM_REMOVEDETAILFIELDINFO 4-47
CM_REMOVERECORD 4-47
CM_SCROLLWINDOW 4-47
CM_SEARCHSTRING 4-47
CM_SETCNRINFO 4-47
CM_SETRECORDEM PHASIS 4-47
CM_SORTRECORD 4-47
CN_DRAGAFTER 4-46
CN_DRAGLEAVE 4-46
CN_DRAGOVER 4-46
CN_DROP 4-46
CN_DROPHELP 4-46
CN_E M PHASIS 4-46
CN_E N DE D IT 4-46
CN_ENTER 4-46
CN_IN ITDRAG 4-46
CN_KI LLFOCUS 4-46
CN_ QUERYDEL T A 4-46
CN_REALLOCPSZ 4-46
CN_SCROLL 4-46
CN_SETFOCUS 4-46

styles
CS_AUTOPOSITION 4-46
CS_AUTOSELECTION 4-46
CS_EXTENDSEL 4-46
CS_M UL TIPLESEL 4-46
CS_READONL Y 4-46
CS_SINGLESEL 4-46
CS_VERIFYPOINTERS 4-46

contents view of objects
detai ls view of an object 8-2
icons view 8-2

control program functions 1 -29
control wi ndows 1 - 1 6
coordinate space 1 -27
coprocessi n g 2-1 3
Country obj ect 8-7
Create another action 8-22
critical sections 4-1 4
esc. extension of class def in it ion f i le 7-6
CS_AUTOPOSITION 4-46
CS_AUTOSELECTION 4-46
CS_EXTEN DSEL 4-46
CS_M ULTIPLESEL 4-46
CS_READONLY 4-46
CS_SINGLESEL 4-46
CS_VER I FYPOI NTERS 4-46
CTRL + BREAK 4-35, 4-36
CTRL + C 4-35, 4-36
CTXT_CLOSE 8-1 3
CTXT_COPY 8-1 3

CTXT_CREATEANOTHE R 8-1 3
CTXT_DELETE 8-1 3
CTXT_HELP 8-1 3
CTXT_MOVE 8-1 3
CTXT_OPEN 8-1 3
CTXT_PR I NT 8-1 3
CTXT_SETTINGS 8-1 3
CTXT_SHADOW 8-1 3
CTXT_WINDOW 8-1 3
CTXT_, standard pop-up menu items 8-1 3
cursor 1 - 1 9

D
data object 8-3
data section, c lass defi n it ion fi l e 7-7
data segment 2-6

a l lowabl e types 2-8
defi n i ng 5-1 3

OAT A statement 5-8
defi n it ion 5-8
options

LOADONCALL 5-8
M U LTIPLE 5-8
PRELOAD 5-8
READONL Y 5-8
READWRITE 5-8
SINGLE 5-8

DC_SEM_SHARED 4-1 8
DdfBegi nlist 4-41
DdfBitmap 4-41
DdfEndlist 4-41
DdfHyperText 4-41
Ddfl nform 4-41
Ddf ln it ial ize 4-41
Ddflistltem 4-41
DdfMetaf i l e 4-41
DdfPara 4-41
DdfSetColor 4-41
DdfSetFont 4-41
DdfSetFontStyle 4-41
DdfSetFormat 4-41
DdfSetTextAi ign 4-41
DdfText 4-41
debuggi n g programs 4-1 6
debuggi n g , SOM 7-1 8
dedicated pag i ng un i t 2-7
Default Class Styles for Objects

CLSSTYLE_NEVERCOPY 8-36
CLSSTYLE_NEVERDELETE 8-36
CLSSTYLE_NEVERDRAG 8-36
CLSSTYLE_NEVER M OVE 8-36
CLSSTYLE_NEVERPRINT 8-36
CLSSTYLE_NEVERRENAME 8-36
CLSSTYLE_NEVERSHADOW 8-36
CLSSTYLE_NEVERTEM PLATE 8-36
CLSSTYLE_NEVERVISI BLE 8-36

I ndex X-3

default d ia log procedu re 1 - 1 8
descri ptor table 2-5
descri ptor table entry 2-5

g ranularity bit 2-5
des i g n i ng an object-oriented user i nterface 8-4
des i g n i ng workplace classes 8-9
Desktop 8-6
desktop wi ndow 1 - 1 4
DestroyWi ndowHook 4-51
detai ls view 8-23
detai ls view of an object 8-2
device context 1 -4, 1 -24, 1 -28

defi n it ion of 1 -25
device driver code

bi-modal 6-3
device dr ivers 1 - 1 2
device emulation . 6-4
device 1/0 4-30
device object 8-3
DEVICE statement· 6-7 , 6-9
device support 1 - 1 2
device vi rtual ization 6-4
device-hel per services 1 - 1 2
device-independent g raphics 1 -4
devices 1 - 1 2

b lock 1 - 1 2
character 1 - 1 2

d ialog
box editor 1 -22
i nc l udes 1 -21
procedu re 1 - 1 8
template 1-1 7
templates 1 -2 1
wi ndow 1 - 1 7

d ialog box 1 - 1 8
d i rect manipulation 1 -23
d i rect mani pu l ation functions 1 -29
Di rect Manipulation Methods 8-9
di rect manipulation, d rag/drop 8-4, 8-28
d i rect memory access (DMA) 1 - 1 2
d i rect pr inting 1 -29
d i rector ies, searc h i ng 4-32
d i rectory 1 -8
discard i ng memory objects 4-1 1
d isk/diskette 6-1 5
dispatching priority 1 -6
DLL 5-2

defin i n g code attri butes 5-6
defi n i ng data attri butes 5-8
g lobal data 5-7
i n it ial ization 5-9

I N ITGLOBAL option 5-1 3
I N IT INSTANCE option 5-1 3
L IBRARY statement 5-9

i nstance data 5-7
shared data 5-7
termi nation 5-9

X-4 Application Design Guide

DLL M anagement, SOM 7-1 9
DMA contro l ler 6-1 5
DM&Us. E NDCONVERSATION 8-29
DM_ 8-28
DM_DRAGOVER 8-29
DM_DROP 8-29
DM_PRINTOBJECT 8-28
DM'-RENDER 8-29
DM_RENDERCOMPLETE 8-29
DOS app l ication capabi l it ies 6-5
DOS appl ications

d isplay ing under P M 6-1
mult ip le sessions 6-1
running under OS/2 6-1
running under PM 6-6

DOS compatib i l ity envi ronment 1 -1 1 , 6-1
DOS compatib i l ity mode 6-1
DOS Emulation 6-2
DOS extender services 6-1 1
DOS i nterrupt INT 67h 6-7
DOS Protect M ode I nterface (DPM I) 6-1 0
DOS Session 6-1

capabi l it ies 6-5
defi n it ion 6-2
DOS Settings 6-5
1/0 privi l ege map 6-2
software i nterrupt reflection 6-2
specify ing l i m its 6-7

DOS Session M anager 6-2
DOS Setti ngs 6�5

categories
DOS envi ronment 6-5
fi le operations 6-5
hardware envi ronment 6-5
memory extenders 6-5
video 6-5
wi ndowing 6-5

DosAcknowledgeSignai Exception 4-36
DosAddM uxWaitSem 4-1 9, 4-25
DosAI IocHuge 4-2
DosAIIocMem 4-2, 4-9
DosAIIocSeg 4-2
DosAI IocSharedMem 4-2 , 4-6
DosAIIocShrSeg 4-2 , 4-6
DosAsyncTimer 4-28
DosBeep 4-30
DosBufReset 4-31
DosCai i Back 4-1 2 , 4-1 7
DosCai i N m Pi pe 4-27
DosCaii N P i pe 4-27
DOSCALL 1 . DLL 5-3
DosCancei LockRequest 4-32
DosCaseMap 4-34
DosChDi r 4-31
DosChg F i lePtr 4-31
DosCLIAccess 4-30
DosCiose 4-31

DosCioseEventSem 4-1 9, 4-20
DosCioseM utexSem 4-1 9, 4-21
DosCioseM uxWaitSem 4-1 9, 4-25
DosCioseQueue 4-28
DosCioseSem 4-1 9 ·

DosCioseVDD 4-37
DosConnectNmPipe 4-27
DosConnectNP i pe 4-27
DosCopy 4-31
DosCreateCSAi ias 4-2, 4-9
DosCreateDi r 4-31
DosCreateEventSem 4-1 9 , 4-20
DosCreateM utexSem 4-1 9, 4-21
DosCreateM uxWaitSem 4-1 9, 4-25
DosCreateNmPipe 4-27
DosCreateNPipe 4-27
DosCreatePipe 4-26
DosCreateQueue 4-28
DosCreateSem 4-1 9
DosCreateThread 4-1 2
DosCreateThread, new features 4-1 2
DosCWait 4-1 2 , 4-1 4
DosDebug 4-1 2 , 4-1 6
DosDelete 4-31
DosDeleteDi r 4-31
DosDeleteM uxWaitSem 4-1 9, 4-25
DosDevConfig 4-30
DosDeviOCtl 4-30
DosDevi0Ctl2 4-30
DosDisConnectNm P i pe 4-27
DosDisConnectNP i pe 4-27
DosDupHandl e 4-31
DosEditName 4-31
DosEnterCritSec 4-1 2, 4-1 4
DosEnterMustComplete 4-36
DosEnumAttribute 4-31
DosErrCiass 4-35
DosError 4-35
DosExecPgm 4-1 2, 4-1 6
DosExit 4-1 2, 4-1 3
DosExitCritSec 4-1 2, 4-1 4
DosExitlist 4-1 2
DosExitMustComplete 4-36
DosFi leiO 4-31
DosFi lelocks 4-31
DosFi ndCiose 4-31 , 4-32
DosFindFirst 4-31 , 4-32
DosFindNext 4-31 , 4-32
DosFi ndNotifyCiose 4-31
DosFindNotifyFi rst 4-31
DosFindNotifyNext 4-31
DosFiatToSe l 3-1 4 , 3-1 7
DosFreeMem 4-2, 4-4
DosFreeModule 4-29, 5-6
DosFreeResource 4-29
DosFreeSeg 4-2
DosFSAttach 4-31

DosFSCtl 4-31
DosFSRamSemCiear 4-1 9
DosFSRamSem Request 4-1 9
DosGetCol l ate 4-34
DosGetCp 4-34
DosGetCtryl nfo 4-34
DosGetDateTime 4-28
DosGetDBCSEv 4-34
DosGetEnv 4-1 2 , 4-1 4, 4-29
DosGetHugeShift 4-2
DosGetlnfoBiocks 4-1 2 , 4-1 4
DosGetlnfoSeg 4-1 2 , 4-1 4
DosGetMachi neMode 4-29
DosGetMessage 4-34
DosGetModeName 4-29
DosGetModHandl e 4-29
DosGetNamedSharedMem 4-2, 4-6
DosGetPI D 4-1 2 , 4-1 4
DosGetPPID 4-1 2, 4-1 4
DosGetProcAddr 4-29
DosGetPrty 4-1 2 , 4-1 4
DosGetResource 4-29
DosGetResource2 4-29
DosGetSeg 4-2, 4-8
DosGetSharedMem 4-2, 4-8
DosGetShrSeg 4-2, 4-6
DosGetVersion 4-29
DosGiveSeg 4-2, 4-8
DosGiveSharedMem 4-2, 4-8
DosHoldSignal 4-35
Dosl nsertMessage 4-34
Dos l nsMessage 4-34
DosKi i i P rocess 4-1 2 , 4-1 4
Dosload M odule 4-29
DosloadModule, runti me dynamic l i nk ing 5-6
DoslockSeg 4-2, 4-1 1
DosMakePi pe 4-26
DosMapCase 4-34
DosMemAva i l 4-2, 4-1 1
DosMkDir 4-31
DosMove 4-31
DosM uxSemWait 4-1 9
DosNewSize 4-31
DosOpen 4-31
DosOpenEventSem 4-1 9, 4-20
DosOpenM utexSem 4-1 9, 4-21
DosOpe n M uxWaitSem 4-1 9, 4-25
DosOpenQueue 4-28
DosOpenSem 4-1 9
DosOpenVDD 4-37
DosPeekNmPipe 4-27
DosPeekNP i pe 4-27
DosPeekOueue 4-28
DosPhysicaiDisk 4-30
DosPortAccess 4-30
DosPostEventSem 4-1 9 , 4-20
DosPri ntDestAdd 4-39

Index X-5

DosPrintDestControl 4-39
DosPri ntDestDel 4-39
DosPri ntDestEnum 4-39
DosPri ntDestGetlnfo 4-39
DosPrintDestSetlnfo 4-39
DosPrintDriverEn u m 4-39
DosPri ntJobConti nue 4-39
DosPri ntJobDel 4-39
DosPri ntJobEnum 4-39
DosPri ntJobGetld 4-39
DosPri ntJobGetlnfo 4-39
DosPrintJobPause 4-39
DosPrintJobSetlnfo 4-39
DosPrintPortEnum 4-39
DosPrintQAdd 4-39
DosPri ntQConti nue 4-39
DosPri ntQDel 4-39
DosPri ntQEnum 4-39
DosPri ntQGetlnfo 4-39
DosPrintQPause 4-39
DosPri ntQProcessorEnum 4-39
DosPri ntQPurge 4-39
DosPrintQSetlnfo 4-39
DosPTrace 4-1 2, 4-1 6
DosPurgeQueue 4-28
DosPutMessage 4-34
DosQAppType 4-29
DosQCurDir 4-31
DosQCu rDisk 4-31
DosQFHandState 4-31
DosQFi le lnfo 4-31
DosQFi leMode 4-33
DosQFSAttach 4-31
DosQFSinfo 4-31
DosQHandType 4-31
DosQNmPHandState 4-27
DosQPathl nfo 4-31
DosQSysl nfo 4-1 2 , 4-31 , 4-33
DosQueryAppType 4-29
DosQueryCol l ate 4-34
DosQueryCp 4-34
DosQueryCtryl nfo 4-34
DosQueryCurrentD i r 4-31
DosQueryCurrentDisk 4-31
DosQueryDBCSEnv 4-34
DosQueryEventSem 4-1 9, 4-20
DosQueryFHState 4-31
DosQueryFi l e lnfo 4-31 , 4-33
DosQueryFi leMode 4-31
DosQueryFSAttach 4-31
DosQueryFSinfo 4-31
DosQueryHType 4-31
DosQueryMem 4-2, 4-1 1
DosQueryMessageCp 4-34
DosQueryModuleHandle 4-29, 5-6
DosQueryModuleName 4-29, 5-6
DosQueryMutexSem 4-1 9, 4-2 1

X-6 Application Design Guide

DosQueryMuxWaitSem 4-1 9, 4-25
DosQueryNm P ipelnfo 4-27
DosQueryNmPi peSemState 4-27
DosQueryNPHState 4-27
DosQueryNPipe lnfo 4-27
DosQueryNPipeSemState 4-27
DosQueryPathl nfo 4-31
DosQueryProcAddr 4-29, 5-6
DosQueryProcType 4-29
DosQueryQueue 4-28
DosQueryResourceSize 4-29
DosQuerySysl nfo 4-1 4, 4-3 1 , 4-33
DosQueryVerify 4-31
DosQVerify 4-31
DosRaiseException 4-36
DosRawReadNmPipe 4-27
DosRawWriteNmPipe 4-27
DosRead 4-31
DosReadAsync 4-31 , 4-33
DosReadQueue 4-28
DosReal l ocHuge 4-2
DosRea l l ocSeg 4-2
DosReleaseM utexSem 4-1 9, 4-21
DosRequestM utexSem 4-1 9, 4-21
DosRequestVDD 4-37
DosResetBuffer 4-31
DosResetEventSem 4-1 9 , 4-20
DosResumeThread 4-1 2, 4-1 3
DosRetForward 4-1 2
DosRmDi r 4-31
DosR2StackReal loc 4-1 2, 4-1 7
DosScanEnv 4-31
DosSearchPath 4-31
DosSel ectDisk 4-31
DosSelectSession 4-35
DosSeiToFiat 3-1 7
DosSemCiear 4- 1 9
DosSem Request 4-1 9
DosSemSet 4-1 9
DosSemSetWait 4-1 9
DosSemWait 4-1 9
DosSendSignaiException 4-36
DosSetCp 4-34
DosSetCurrentD i r 4-31
DosSetDateTi m e 4-28
DosSetDefaultDisk 4-31
DosSetExceptionHandler 4-36
DosSetFHandState 4-32
DosSetFHState 4-32
DosSetFi le l nfo 4-32
DosSetFi lelocks 4-31
DosSetFi l e M ode 4-32, 4-33
DosSetFi lePtr 4-31
DosSetFi l eSize 4-31
DosSetFSi nfo 4-32
DosSetMaxFH 4-32, 4-34
DosSetMem 4-2, 4-1 1

DosSetNm Handl nfo 4-27
DosSetNm P ipeSem 4-27
DosSetNPHState 4-27
DosSetNP ipeSem 4-27
DosSetPathl nfo 4-32
DosSetPriority 4-1 2
DosSetProcCp 4-34
DosSetProcessCp 4-34
DosSetPrty 4-1 2
DosSetRei M axFH 4-32, 4-34
DosSetSession 4-35
DosSetSigHandler 4-35
DosSetSignai ExceptionFocus 4-36
DosSetVerify 4-32
DosShutDown 4-32
DosSizeSeg 4-2
DosSi eep 4-28
DosSM RegisterDD 4-35
DosStartSession 4-35, 6-5
DosStartTimer 4-28
DosStopSession 4-35
DosStopTimer 4-28
DosSubAI IocMem 4-2 , 4-4
DosSubFreeMem 4-2 , 4-4
DosSubSetMem 4-2, 4-4
DosSubUnsetMem 4-2 , 4-4
DosSuspendThread 4-1 2 , 4-1 3
DosTimerAsync 4-28
DosTimerStart 4-28
DosTimerStop 4-28
DosTransactNm P i pe 4-27
DosTransactNPi pe 4-27
DosUnlockSeg 4-2, 4-1 1
DosUnsetExceptionHandler 4-36
DosUnwindException 4-36
DosWaitChi ld 4-1 2 , 4-1 4
DosWaitEventSem 4-1 9, 4-20
DosWaitM uxWaitSem 4-1 9, 4-25
DosWaitNm P i pe 4-27
DosWaitNP i pe 4-27
DosWaitThread 4-1 2, 4-1 4
DosWrite 4-32
DosWriteAsync 4-32, 4-34
DosWriteQueue 4-28
DOS1 6 prefix for 1 6-bit cal ls 3-26
DOS/Wi ndows appl ications 3-2 , 3-4
DPM I

c l ients 6-1 1
host program 6-1 1
Specification Version 0.9 6-1 0
types of c l ients 6-1 1

d rag/drop, d i rect manipu lation 8-4, 8-28
d rawi ng functions 1 -27
dynamic code 4-9
dynam ic data exchange 1 -22

protocol 1 -23
dynam ic data formatti ng 4-40

dynam ic l i n k l i brary (DLL) 1 -7 , 1 -30, 5-2
dynamic l i nk ing 1 -7 , 4-28, 5-2

advantages 5-2
load-time 5-3
run ti me 5-6

dynam ic-data formatt ing
functions 1 -29

E
EMS

basis for 6-6
i nsta l l ation 6-7
memory

specify ing l i m its 6-7
memory areas

managed by 6-8
V E M M .SYS 6-7
Vi rtual Expanded Memory Manager (VE M M) 6-7

encapsulation 7-3
Enhanced DOS Sessions 6-1

components 6-2
DOS Emulation 6-2
DOS Session M anager 6-2
8086 Emulation 6-2

kernel 6-2
enhanced i nstruction set 1 -1
Error Hand l i ng M ethods 8-9
Error Hand l i ng , SOM 7-1 9
error management 4-35
ERROR_SEM_OWNER_DIED 4-1 8
event semaphores 1 - 1 0

states 4-20
exception hand l i ng 1 -1 1
exception management 4-36
execution unit 2-2
EXEC_ASYNCRESULT 4-1 4
exit l ists 1 -6
Expanded Memory Specification (EMS) 6-6, 6-1 5
EXPENTRY keyword 3-29
EXPORTS statement, module-defin it ion f i le 5-1 0
extended attributes, Workplace

.ASSOCTABLE 8-46

.LONGNAME 8-46
Extended Memory Specification (XMS) 6-6, 6-8, 6-1 5
external functions

EXPORTS 5-1 0
I M PORTS 5-1 0
references 5-1 0

external routi nes 5-1

F
factory method , class 7-5
far1 6 cdecl 3-1 9
far1 6 fastcal l 3-1 9
far 1 6 keyword 3-29

I ndex X-7

far 1 6 pascal 3-1 9
fast mode switching 6-3
fast-safe RAM semaphores 4-1 7
f i le a l l ocation table (FAT) 1 -8
f i le d ia logs 4-42
f i le handl es, ava i l ab le 4-34
fi l e mode

query ing 4-33
sett ing 4-33

fi l e sharing 1 -9
fi l e system

character device 1 -9
device handl e 1 -9
d i rectory 1 -8
extended attributes 1 -8
f i le locking 1 -8
functions 4-30
handl e 1 -8
h ierarchy 1 -8
root d i rectory 1 -8
subdi rectory 1 -8

fi l es
read i ng asynch ronously 4-33
writ ing asynchronously 4-34

fi lter ing i n put 1 -20
F indObj ect class methods

wpclsFi ndObjectEnd 8-37
wpclsFindObjectFi rst 8-37
wpclsFi ndObj ectNext 8-37

fixed h i g h threads 1 -7
flags for pop-up menu items i n herited from WPObject

CTXT_CLOSE 8-1 3
CTXT _COPY 8-1 3
CTXT_CREATEANOTHE R 8-1 3
CTXT_DELETE 8-1 3
CTXT_HELP 8-1 3
CTXT_MOVE 8-1 3
CTXT_OPEN 8-1 3
CTXT PRINT 8-1 3
CTXT_SETIINGS 8-1 3
CTXT_SHADOW 8-1 3
CTXT_WINDOW 8-1 3

f lat memory model 2-1 3
address range 2-6
architecture 1 -1
code segment 2-6
data segment 2-6

flat selectors 3-1 5
folders , Workplace 8-7
Font Palette object 8-7
fonts 1 -21 , 1 -26, 4-51

d ia log boxes 4-43
editor 1 -22

frame window 1 - 1 7
freei ng memory 4-4
full-screen appl ications 1 -2 , 1 -4, 3-2
ful l-screen session 3-2

X-8 Application Design Guide

Functions
Bit M aps

GpiDrawBits 4-51
Characters

GpiQueryCharBreakExtra 4-52
GpiQueryCharExtra 4-52
GpiQueryCharOutl i n e 4-52
GpiQueryFaceStr ing 4-52
GpiSetCharBreakExtra 4-52
GpiSetCharExtra 4-52

Checking a P rocess's Vi rtual-Memory Map
DosQueryMem 4-1 1

Code-Page Management
DosCaseMap 4-34
DosGetCol late 4-34
DosGetCp 4-34
DosGetCtryl nfo 4-34
DosGetDBCSEv 4-34
DosMapCase 4-34
DosQueryCol l ate 4-34
DosQueryCp 4-34
DosQueryCtryl nfo 4-34
DosQueryDBCSEnv 4-34
DosSetCp 4-34
DosSetProcCp 4-34
DosSetProcessCp 4-34

Contro l l i n g Threads
DosResumeThread 4-1 3
DosSuspendThread 4-1 3

Creating Threads
DosCreateTh read 4-1 2

Custom izing Help
DdfBeginl ist 4-41
DdfBitmap 4-41
DdfEndlist 4-41
DdfHyperText 4-41
Ddflnform 4-41
Ddfln it ial ize 4-41
Ddflistltem 4-41
DdfMetafi l e 4-41
DdfPara 4-41
DdfSetColor 4-41
DdfSetFont 4-41
DdfSetFontStyl e 4-41
DdfSetFormat 4-41
DdfSetTextAi ig n 4-41
DdfText 4-41

Debugg i ng P rograms
DosDebug 4-1 6
DosPtrace 4-1 6

Desktop Background
WinQueryDesktopBkgnd 4-51
WinSetDesktopBkgnd 4-51

Determi n i ng Avai lable Memory
Dos MemAva i l 4-1 1

Device 1/0
DosBeep 4-30
DosCLIAccess 4-30
DosDevConfig 4-30

Functions (continued)
Device 110 (continued)

DosDeviOCtl 4-30
DosDevi0Ctl2 4-30
DosPhysica iD isk 4-30
DosPortAccess 4-30

Dialog Boxes
WinFi leDgl 4-43
WinFontDgl 4-43

Discard ing Memory Objects
DoslockSeg 4-1 1
DosUnlockSeg 4-1 1

DosAI IocMem 4-2
DosGetShrSeg 4-2
DosSetFHState 4-32
Dynam ic L ink ing

BadDynlink 4-29
DosFreeModule 4-29
DosFreeResource 4-29
DosGetEnv 4-29
DosGetMachi neMode 4-29
DosGetModeName 4-29
DosGetModHandl e 4-29
DosGetProcAddr 4-29
DosGetResource 4-29
DosGetResource2 4-29
DosGetVers ion 4-29
DosLoadModule 4-29
DosQAppType 4-29
DosQueryAppType 4-29
DosQueryModuleHandle 4-29
DosQueryModuleName 4-29
DosQueryProcAddr 4-29
DosQueryProcType 4-29
DosQueryResourceSize 4-29

Ending Other Process
Dos K i ii P rocess 4-1 4

E rror M anagement
DosErrCiass 4-35
DosError 4-35

Exception Management
DosAcknowledgeSignai Exception 4-36
DosEnterM ustComplete 4-36
DosExitM ustComplete 4-36
DosRaiseException 4-36
DosSendSignaiException 4-36
DosSetExceptionHandler 4-36
DosSetSignai ExceptionFocus 4-36
DosUnsetExceptionHandler 4-36
DosUnwindException 4-36

Exiting from Threads and Processes
DosExit 4-1 3

F i l e I n it ial ization
WinQueryProfi leData 4-38
WinQueryProf i le lnt 4-38
WinQueryProf i leSize 4-38
WinQueryProfi l eStri ng 4-38
Wi nWriteProfi leData 4-38
Wi nWriteProfi leString 4-38

Functions (continued)
F i l e Systems

DosBufReset 4-31
DosCancei LockRequest 4-32
DosChDir 4-31
DosChgF i lePtr 4-31
DosCiose 4-31
DosCopy 4-31
DosCreateDi r 4-31
DosDelete 4-31
DosDeleteDi r 4-31
DosDupHandle 4-31
DosEditName 4-31
DosEnumAttri bute 4-31
DosFi le iO 4-31
DosFi l eLocks 4-31
DosFi ndCiose 4-31
DosFi ndFi rst 4-31
DosFindNext 4-31
DosFi ndNotifyCi ose 4-31
DosFindNotifyFi rst 4-31
DosFindNotifyNext 4-31
DosFSAttach 4-31
DosFSCtl 4-31
DosMkDir 4-31
DosMove 4-31
DosNewSize 4-31
DosOpen 4-31
DosQCurDir 4-31
DosQCurDisk 4-31
DosQFHandState 4-31
DosQFile lnfo 4-31
DosQFSAttach 4-31
DosQFSinfo 4-31
DosQHandType 4-31
DosQPath l nfo 4-31
DosQSysl nfo 4-31
DosQueryCurrentD i r 4-31
DosQueryCurrentDisk 4-31
DosQueryFHState 4-31
DosQueryFi le lnfo 4-31
DosQueryFi l eM ode 4-31
DosQueryFSAttach 4-31
DosQueryFSinfo 4-31
DosQueryHType 4-31
DosQueryPathlnfo 4-31
DosQuerySysl nfo 4-31
DosQueryVerify 4-31
DosQVerify 4-31
DosRead 4-31
DosReadAsync 4-31
DosResetBuffer 4-31
DosRmDir 4-31
DosScanEnv 4-31
DosSearchPath 4-31
DosSelectDisk 4-31
DosSetCurrentD i r 4-31
DosSetDefau ltDisk 4-31
DosSetFHandState 4-32

Index X-9

Functions (continued)
F i l e Systems (continued)

DosSetFi le l nfo 4-32
DosSetFi leLocks 4-31
DosSetFi leMode 4-32
DosSetFi lePtr 4-31
DosSetFi l eSize 4-31
DosSetFSi nfo 4-32
DosSetMaxFH 4-32
DosSetPathl nfo 4-32
DosSetRei M axFH 4-32
DosSetVerify 4-32
DosShutDown 4-32
DosWrite 4-32
DosWriteAsync 4-32

Fonts
GpiloadPubl icFonts 4-52
GpiQuerylogicaiFont 4-52
GpiUnloadPubl icFonts 4-52

Freeing Memory
DosFreeMem 4-4

Generating Dynamic Code
DosAI IocMem 4-9
DosCreateCSAi i as 4-9

Gett ing Thread and Process I nformation
DosGetEnv 4-1 4
DosGetlnfoBiocks 4-1 4
DosGetlnfoSeg 4-1 4
DosGetPI D 4-1 4
DosGetPPID 4-1 4
DosGetPrty 4-1 4
DosQuerySysl nfo 4-1 4

Hand l i ng Critical Sections
DosEnterCritSec 4-1 4
DosExitCritSec 4-1 4

Heap Management
WinAI IocMem 4-37
Wi nAvai i Mem 4-37
WinCreateHeap 4-37
WinDestroyHeap 4-37
WinFreeMem 4-37
WinlockHeap 4-37
WinReal l ocMem 4-37

I nsta l l ed Program List
PrfAddProgram 4-37
PrfChangeProgram 4-37
PrfCreateGroup 4-37
PrfDestroyGroup 4-37
PrfQueryDefin ition 4-37
PrfQueryProgramCategory 4-37
PrfQueryProgramHandl e 4-37
PrfQueryProgramTitles 4-37
PrfRemoveProgram 4-37
Wi nAddProgram 4-37
WinCreateG rou p 4-37
W i n l nstStartApp 4-37
Wi nQueryDefi nit ion 4-37
Wi nQueryProg ramTitles 4-37
Wi nTerm i nateApp 4-37

X-1 0 Application Design Guide

Functions (continued)
Memory Al location

DosAI IocHuge 4-2
DosAI IocMem 4-2
DosAI IocSeg 4-2

Memory Subal location
DosSubUnsetMem 4-4

Memory Subal loction
DosSubAI IocMem 4-4
DosSubFreeMem 4-4
DosSu bSetMem 4-4

Memory-Management
DosAI IocHuge 4-2
DosAI IocSeg 4-2
DosAI IocSharedMem 4-2
DosAI IocShrSeg 4-2
DosCreateCSAi i as 4-2
DosFreeMem 4-2
DosGetHugeShift 4-2
DosGetNamedSharedMem 4-2
DosGetSeg 4-2
DosGetSharedMem 4-2
DosGiveSeg 4-2
DosGiveSharedMem 4-2
DoslockSeg 4-2
Dos MemAva i l 4-2
DosQueryMem 4-2
DosReal locHuge 4-2
DosReal locSeg 4-2
DosSetMem 4-2
DosSizeSeg 4-2
DosSubAI IocMem 4-2
DosSubFreeMem 4-2
DosSu bSetMem 4-2
DosSubUnsetMem 4-2
DosUnlockSeg 4-2

Memory-Management Functions
DosFreeSeg 4-2
DosSubAI IocMem 4-2
DosSubFreeMem 4-2

M essage Retrieval
DosGetMessage 4-34
Dosl nsertMessage 4-34
Dos l ns Message 4-34
DosPutMessage 4-34
DosQueryMessageCp 4-34

M i g ration
Wi nQueryCiassThunkProc 4-42
Wi nQueryWi ndowMode 4-42
WinQueryWi ndowThunkProc 4-42
Wi nSetCiassThunkProc 4-42
WinSetWi ndowThunkProc 4-42

Paths and Regions
Gpi PathToRegion 4-51

Polyl i nes
GpiPolyl i neDisjoi nt 4-52

Pop-Up Menus
WinPopUpMenu 4-51

Functions (continued)
Querying F i l e Mode

DosQFi leMode 4-33
DosQueryFi le lnfo 4-33

Querying System I nformation
DosQSysl nfo 4-33
DosQuerySyslnfo 4-33

Read i ng Asynchronously
DosReadAsync 4-33

Regions
GpiFioodFi l l 4-51
GpiFrameRegion 4-51

Searching D i rectories
DosFindCiose 4-32
DosFindFirst 4-32
DosFindNext 4-32

Semaphores
DosAddM uxWaitSem 4-1 9
DosCioseEventSem 4-1 9
DosCioseM utexSem 4-1 9
DosCioseM uxWaitSem 4-1 9
DosCioseSem 4-1 9
DosCreateEventSem 4-1 9
DosCreateM utexSem 4-1 9
DosCreateMuxWaitSem 4-1 9
DosCreateSem 4-1 9
DosDeleteMuxWaitSem 4-1 9
DosFSRamSemCiear 4-1 9
OosFSRamSemRequest 4-1 9
DosM uxSemWait 4-1 9
DosOpenEventSem 4-1 9
DosOpenMutexSem 4-1 9
DosOpenM uxWaitSem 4-1 9
DosOpenSem 4-1 9
DosPostEventSem 4-1 9
DosQueryEventSem 4-1 9
DosQueryM utexSem 4-1 9
DosQueryMuxWaitSem 4-1 9
DosReleaseM utexSem 4-1 9
DosRequestM utexSem 4-1 9
DosResetEventSem 4-1 9
DosSemCiear 4-1 9
DosSem Request 4-1 9
DosSemSet 4-1 9
DosSemSetWait 4-1 9
DosSemWait 4-1 9
DosWaitEventSem 4-1 9
DosWaitMuxWaitSem 4-1 9

Session M anagement
DosSelectSession 4-35
DosSetSession 4-35
DosSM RegisterDD 4-35
DosStartSession 4-35
DosStopSession 4-35

Setting Ava i l able Number of F i le Handl es
DosSetMaxFH 4-34
DosSetRei M axFH 4-34

Setting Memory Commitment and Access
DosSetMem 4-1 1

Functions (continued)
Setting the Fi l e Mode

DosSetFi leMode 4-33
Signal l i ng Events with Semaphores

DosCioseEventSem 4-20
DosCreateEventSem 4-20
DosOpenEventSem 4-20
DosPostEventSem 4-20
DosQueryEventSem 4-20
DosResetEventSem 4-20
DosWaitEventSem 4-20

Signals
DosHoldSignal 4-35
DosSetSigHandler 4-35

Spooler
DosPrintDestAdd 4-39
DosPri ntDestControl 4-39
DosPri ntDestDel 4-39
DosPri ntDestEnum 4-39
DosPrintDestGetlnfo 4-39
DosPri ntDestSetl nfo 4-39
DosPri ntDriverEnum 4-39
DosPri ntJobConti nue 4-39
DosPri ntJobDel 4-39
DosPrintJobEnum 4-39
DosPri ntJobGetld 4-39
DosPri ntJobGetl nfo 4-39
DosPri ntJobPause 4-39
DosPri ntJobSetlnfo 4-39
DosPri ntPortEnum 4-39
DosPrintQAdd 4-39
DosPri ntQContinue 4-39
DosPri ntQDel 4-39
DosPrintQEnum 4-39
DosPri ntQGetlnfo 4-39
DosPri ntQPause 4-39
DosPri ntQProcessorEnum 4-39
DosPrintQPurge 4-39
DosPri ntQSetl nfo 4-39
SpiControi Device 4-39
SpiCreateDevice 4-39
SpiCreateQueue 4-39
SpiDeleteDevice 4-39
SpiDeleteJob 4-39
Spi DeleteQueue 4-39
SpiEnum Device 4-39
SpiEnum Driver 4-39
SpiEnumJob 4-39
SpiEnumPort 4-39
SpiEnumQueue 4-39
SpiEnumQueueProcessor 4-39
Spi HoldJob 4-39
Spi HoldQueue 4-39
SpiPurgeQueue 4-39
SpiQueryDevice 4-39
SpiQueryJob 4-39
SpiQueryJobld 4-39
SpiQueryQueue 4-39
Spi ReleaseJob 4-39

Index X-1 1

Functions (continued)
Spooler (continued)

Spi ReleaseQueue 4-39
SpiSetDevice 4-39
SpiSetJoblnfo 4-39
SpiSetQueue 4-39

Starti ng Programs
DosExecPgm 4-1 6

Transformations
GpiConvertWith M atrix 4-52

Usi n g Named Pipes
DosCa i iN m P i pe 4-27
DosCai i N P i pe 4-27
DosConnectNm P i pe 4-27
DosConnectNPipe 4-27
DosCreateNmPipe 4-27
DosCreateNPipe 4-27
DosDisConnectNmPipe 4-27
DosDisConnectN P i pe 4-27
DosPeekNmPipe 4-27
DosPeekNPipe 4-27
DosQNm PHandState 4-27
DosQueryNmPi pelnfo 4-27
DosQueryNmPipeSemState 4-27
DosQueryNPHState 4-27
DosQueryNPipelnfo 4-27
DosQueryNPipeSemState 4-27
DosRawReadN m P i pe 4-27
DosRawWriteNmPipe 4-27
DosSetNmHandlnfo 4-27
DosSetNmPi peSem 4-27
DosSetNPHState 4-27
DosSetNPi peSem 4-27
DosTransactNm P i pe 4-27
DosTransactNP i pe 4-27
DosWaitN m P i pe 4-27
DosWaitNPipe 4-27

Using Named Shared Memory
DosAIIocSharedMem 4-6
DosAI IocSh rSeg 4-6
DosGetNamedSharedMem 4-6
DosGetShrSeg 4-6

Usi n g Queues
DosCioseQueue 4-28
DosCreateQueue 4-28
DosOpenQueue 4-28
DosPeekQueue 4-28
DosPurgeQueue 4-28
DosQueryQueue 4-28
DosReadQueue 4-28
DosWriteQueue 4-28

Using Semaphores for M ult ip le Waiti ng
DosAddM uxWaitSem 4-25
DosCioseM uxWaitSem 4-25
DosCreateM uxWaitSem 4-25
DosDeleteMuxWaitSem 4-25
DosOpenMuxWaitSem 4-25
DosQueryM uxWaitSem 4-25
DosWaitM uxWaitSem 4-25

X-1 2 Application Design Guide

Functions (continued)
Using Semaphores for M utual Exc l usion

DosCioseM utexSem 4-21
DosCreateM utexSem 4-21
DosOpenMutexSem 4-21
DosQueryM utexSem 4-21
DosReleaseM utexSem 4-21
DosRequestM utexSem 4-21

Usi ng Threads and Processes
DosCai i Back 4-1 2
DosCreateThread 4-1 2
DosCWait 4-1 2
DosDebug 4-1 2
DosEnterCritSec 4-1 2
Dos ExecPgm 4-1 2
DosExit 4-1 2
DosExitCritSec 4-1 2
DosExitlist 4-1 2
DosGetEnv 4-1 2
DosGetlnfoBiocks 4-1 2
DosGetlnfoSeg 4-1 2
DosGetPI D 4-1 2
DosGetPP I D 4-1 2
DosGetPrty 4-1 2
DosKi i i Process 4-1 2
DosPTrace 4-1 2
DosQSysl nfo 4-1 2
Dos ResumeThread 4-1 2
DosRetForward 4-1 2
DosR2StackReal loc 4-1 2
DosSetPriority 4-1 2
DosSetPrty 4-1 2
DosSuspendThread 4-1 2
DosWaitChi ld 4-1 2
DosWaitThread 4-1 2

Using Timers
DosAsyncTimer 4-28
DosGetDateTi me 4-28
DosSetDateTime 4-28
DosSieep 4-28
DosStartTimer 4-28
DosStopTimer 4-28
DosTimerAsync 4-28
DosTi merStart 4-28
DosTi merStop 4-28

Using U n named Pipes
DosCreatePipe 4-26
Dos M akePipe 4-26

Using Unnamed Shared Memory
DosGetSeg 4-8
DosGetSharedMem 4-8
DosGiveSeg 4-8
DosGiveSharedMem 4-8

VDD Services
DosCi oseVDD 4-37
DosOpenVDD 4-37
DosRequestVDD 4-37

Waiti ng for Threads
DosCWai t 4-1 4

Functions (continued)
Waiting for Threads (continued)

DosWaitChi ld 4-1 4
DosWaitThread 4-1 4

WlnCheckButton 4-53
WinCheckMenultem 4-53
WinCreateObject 8-40
WinDeletelboxltem 4-53
WlnDe registerObjectCi ass 8-40
Wi ndow Locking

WinlockWi ndow 4-38
WinlockWi ndowUpdate 4-38
WinQueryWi ndowlockCount 4-38

Window M anagement
WinRegisterW i nDestroy 4-38

WinEnableControl 4-53
WinEnableMenultem 4-53
WinEnumObjectCiasses 8-40
WinFreelcon 8-40
Win lnsertlboxltem 4-53
W i n lsControi Enabled 4-53
Win lsMenultemChecked 4-53
Win lsMenultemVal id 4-53
WinloadFi le lcon 8-40
WinMenultemEnabled 4-53
Wi nQueryButtonCheckState 4-53
Wi nQuerylboxCount 4-53
Wi nQuerylboxltemText 4-53
WinQuerylboxltemTextlength 4-53
Wi nQuerylboxSel ectedltem 4-53
Wi nQueryObject 8-40
WinReplaceObjectCiass 8-40
WinRestoreWi ndowPos 8-40
Wi nSetF i l e lcon 8-40
Wi nSetlboxltemText 4-53
Wi nSetMenultemText 4-53
Wi nSetObjectData 8-40
Wi nShutdownSystem 8-40
Wi nStoreWi ndowPos 8-40
Workplace

WinCreateObject 4-40
WinDeregisterObjectCiass 4-40
WinDestroyObject 4-40
WinEnumObjectCi asses 4-40
WinFreeFi le lcon 4-40
WinloadFi le lcon 4-40
WinRegisterObjectCiass 4-40
WinReplaceObjectCiass 4-40
Wi n RestoreWi ndowPos 4-40
Wi nSetF i lelcon 4-40
WinSetObjectData 4-40
WinShutdownSystem 4-40
WinStoreWi ndowPos 4-40

Writ ing Asynchronously
DosWriteAsync 4-34

functions, nam i ng gu idel i nes 4-1

G
gate 2-9

descr iptor 2-9, 2-1 0
types of 2-1 o

types of 2-9
GetData 7-1 5, 7-1 7
get_ 7-1 7
g lobal data, DLLs 5-7
Global Descr iptor Tabl e Register (GDTR) 2-3
Global Descr iptor Table (GOT) 2-5, 3-1 5
GpiCharStr ing 1 -27
GpiCharStr ingPos 1 -27
GpiConvertWithM atrix 4-52
GpiCreatelogFont 1 -28
GpiDrawBits 4-51
GpiDrawSegment 1 -28
GpiF ioodFi l l 4-51
Gpi FrameRegion 4-51
Gpi loadPubl icFonts 4-52
Gpi PathToRegion 4-51
GpiPoly l i neDisjo int 4-52
GpiQueryCharBreakExtra 4-52
GpiQueryCharExtra 4-52
GpiQueryCharOutl i n e 4-52
GpiQueryFaceString 4-52
GpiQuerylogicai Font 4-52
GpiSetAttrs 1 -25
GpiSetCharBreakExtra 4-52
GpiSetCharExtra 4-52
GpiSetCharSet 1 -28
GpiSetColor 1 -25
GpiUn loadPubl icFonts 4-52
gran u larity 4-3
g ranularity bit 2-5
g raphic pr imitives 1 -25

arc 1 -25
area 1 -25
i m age 1 -25
l i ne 1 -25
marker 1 -25

graphic tools 1 -26, 1 -27
bit map 1 -26
c l i pping 1 -27
font 1 -26
logical color palette 1 -26
path 1 -26
transformation 1 -27

Graphics P rogramm i ng I nterface 1 -24
functions 1 -30

groups, SOM methods 7-33
group, methods 7-8
guard page attri bute 2-1 7

H
hard-copy output 1 -28

Index X-1 3

hardware i nterrupt handler routi nes 6-1 6
header fi l e, SOM . H 7-1 8
heap 4-4
help i nformation 4-40

developing 1 -24
m u lt ip le viewport 4-40

help panel 1 -24
help view of an object 8-3
helpe r macros 4-52
HELPPANEL 8-32
h igh performance f i le system (HPFS) 1 -8
H I M E M area 6-1 0
hooks 4-51
hot spot 1 -1 9

I B M System Object Model (SOM) 8-1 , 8-8
Icon Editor 1 -22
ICONFILE 8-32
ICONPOS 8-33
ICONRESOURCE 8-33
icons 1 -21
icons view of an object 8-2
icons, user i nterface 8-2
I D manipu lation, SOM 7-1 8
id le-ti me threads 1 -7
i mage 1 -25
i m plementation header fi l e for SOM class, . I H 7-1 2
I M PL I B , i m port l i brary 5-1 2
i m p l i ed metaclass 7-30
i m port l i braries 5-1 0
i m port l i b rary, contents 5-1 0
I MPORTS statement, module-defi n it ion fi l e 5-1 0
i n-use l ist, Workplace objects 8-30
i ncl ude fi l e layout 3-1 0
i ncl ude section, c lass defi nit ion fi l e 7-7
i nd i rect manipulation 8-4
I nformation Presentation Fac i l ity (IPF) 1 -23, 4-40, 8-21
i nheritance 7-4, 7-24
i nheritance, object characteristics and behavior 8-3
I N ITGLOBAL, L I B RARY statement 5-1 3
i n it ial izat ion, SOM 7-5
I N ITI NSTANCE, L IBRARY statement 5-1 3
i n put message 1 -3
i nput/output processi n g 2-1 1
i nsta l lation, Workplace objects

i nsta l lation batch fi l es, REXX 8-44
i nsta l l ation programs 8-42
Workplace Class List Obj ect 8-45

i nstance data 2-1 5, 3-4, 7-7, 7-21
i nstance data, DLL 5-7
i nstance method 7-4
i nstance of c lass 7-4
i nstruction decode unit 2-2
i nstructions, p i pel i ned execution of 2-2
I NT 21 h m u lt ip lex 6-1 2

X-1 4 Appl ication Design Guide

I NT 31 h services 6-1 1
I NT 32h i nterface 6-1 2
i nteraction with objects

d i rect manipulation, d rag/d rop 8-4
i nd i rect manipulation 8-4

i nterprocess communication 1 - 1 0
protocols 1 -1 0

device support 1 - 1 2
exception hand l i ng 1 - 1 1
m u lt ip le DOS sessions 1-1 1
pi pes 1 - 1 0
queues 1 -1 1
semaphores 1 - 1 0
shared memory 1 -1 1

I nterrupt Descr iptor Table Register (I DTR) 2-3
i nterrupt gates 2-1 0
i nvoking m ethods, SOM 7-20
IPF tags

:acviewport 4-41
:br 4-41
:ddf 4-41
:docprof 4-41
:font 4-41
:tabl e 4-41
:title 4-41

item types for i n-use l ist
110 address space 2-1 1

protection mechanisms 2-1 1

K
keyboard 6-1 5
keyboard i nput 1 - 1 9
Keyboard object 8-7
KEYNAM ES, object setup variables 8-34
KEYNAME, object setup variables 8-32, 8-41
KILLPROCESS 4-36

L
language b inding f i les , SOM 7-6
language b inding fi l es , SOM comp i l e r

C program template f o r c lass implementation 7-1 2
.CS2, styl ized form of CSC 7-1 2
.C,C p rogram template for c lass

i mplementation 7-1 2
.DEF, l i nker f i le 7-1 2
. H , publ ic header f i le for SOM c l ient 7-1 2
. I H , i m plementation header fi l e 7-1 2
.PH, private i m plementation header fi l e 7-1 2

. PSC, pr ivate class i mplementation fi l e 7-1 2

.SC, publ ic c lass defi n ition fi l e 7-1 2
LOT descri ptors , used by 3-1 7
LOT ti l i ng 2-1 8
L IBPATH, locating DLLs 5-5
l i b rary fi l es 3-9
L IBRARY statement options

I N ITGLOBAL 5-9, 5-1 3

LIBRARY statement options (continued)
I N ITINSTANCE 5-9, 5-1 3
TERMGLOBAL 5-9
TER M INSTANCE 5-9

l ib rary support 3-1 2
L I M EMS emulation 6-7
L I M EMS emulation, i mplementation of 6-7
L IMA XMS emulation 6-9
l i m it checking 2-8
l i ne 1 -25
l inear address 1 - 1 1
l inear memory model 1 -1
load option, LOADONCALL 5-6
l oad option, PRELOAD 5-6
load-t ime dynamic l i nk ing 5-3
load ing a DLL 5-6
LOADONCALL, defin i ng CODE attr i butes 5-6
Local Descr iptor Table Register (LDTR) 2-3
Local Descr iptor Tabl e (LOT) 2-5, 2-1 4
locating DLLs, L IBPATH 5-5
LOCK prefix i nstructions 2-1 3
log ical color palette 1 -26
logical devices 1 -5
log ical view of storage m edia 1 -8

M
main thread 1 -6
main window 1 - 1 4
M akeMyWindow() registration routine 3-29
marker 1 -25
M E M MAN statement, CONFIG.SYS 5-20
memory a l location 4-2
memory commitment and access 4-1 1
memory extender support 6-6
memory extenders

L IMA XMS Version 2.0 6-8
memory management 1 -7
Memory M anagement M ethods 8-9
Memory M anagement, SOM 7-1 9
memory objects 1 -1 1 , 2-1 5, 4-1

characteristics of 2-1 5
d iscard i n g 4-1 1
s ize l i m it 4-1

memory overcomm itment feature 4-1 1
memory segments 1 -7

maximum s ize 1 -7
memory subal location 4-4
MEMORYITEM 8-30
menu 1 -21
menu bar 1-17
message i nput parameters 1 -21
message processi n g 1 - 1 9
message queue 3-3
message queues 1-1 1
message retrieval functions 4-34
messages 1 - 1 9

metaclass 7-28
metacl ass section, c lass defin it ion fi l e 7-7
metaclasses 7-5
metafi l es 1 -28, 4-40

defin i tion of 1 -28
method 7-3
method g roups 7-8
method . g roups, SOM 7-33
method g roups, Workplace 8-9
method overrides 7-4
method stub, SOM 7-1 4
M ethodDebug 7-1 5, 7-1 7
m ethods section, c lass definit ion f i le 7-7
m i g ratin g to OS/2 2.0 3-33
migration, 32-Bit 4-41
M INWIN 8-34
m ixed 1 6-bit appl ications 3-6
mixed 32-bit app l icati ons 3-8
modal d ialog box 1 - 1 8
m odeless d ialog box 1 - 1 8
mod u l e-defin ition f i l e 5-6, 5-1 0
mouse 6-1 5
mouse capture window 1 - 1 9
mouse i nput 1 - 1 9
M o use object 8-7
mouse pointer 1 - 1 9
M PF RO M P macro 3-30
m u lt iple DOS Mode session, creating 6-2
m u ltip l e DOS sessions 1 -1 1
m ult iple viewport, he lp i nformation 4-40
m ultitasking

def inition of 1 -4
levels 1 -5
types of 1 -4

m utex semaphores 1 - 1 0
m uxwait semaphores 1 - 1 0

N
name s hared memory 1 -1 1
named p ipes 1 - 1 0
n amed shared memory 4-6
nami n g conventions, SOM 7-1 6
N ew 7-29
NewCiass 7-23, 7-29
NewCi ass, SOM function 7-1 7
New, S O M M acro 7-1 7
NOCOPY 8-33
NODELETE 8-32
NODRAG 8-34
NOMOVE 8-33
non-persistent objects 8-9
NOPRI NT 8-33
NORENA M E 8-34
NOSHADOW 8-33
notebook w indow control 4-44

messages
BKM_CALCPAGERECT 4-45
BKM_DELETEPAGE

�
4-45

Index X-1 5

notebook window control (continued)
messages (continued)

BKM_INSERTPAGE 4-45
BKM_INVALIDATETABS 4-45
BKM_QU ERYPAGECOUNT 4-45
B KM_OUERYPAGE I D 4-45
B KM_QUERYPAGEULONG 4-45
B KM_QUERYPAGEWI NDOWHWND 4-45
BKM_QU ERYTABBITMAP 4-45
BKM_OU ERYTABTEXT 4-45
BKM SETD I M ENSIONS 4-45
BKM SETPAGEULONG 4-45
BKM_SETPAGEWINDOWHWND 4-45
B KM_SETSTATUSLINETEXT 4-45
B KM_SETTABBITMAP 4-45
B KM_SETTABTEXT 4-45
B KM_TURNTOPAGE 4-45
BKN_NEWPAGESIZE 4-45
BKN_PAGESELECTED 4-45

styles
B KS BACKPAGESBL 4-44
B KS_BACKPAGESBR 4-44
BKS_BACKPAGESTL 4-44
BKS_BACKPAGESTR 4-44
B KS_MAJORTABBOTTOM 4-45
BKS_MAJORTABLEFT 4-45
B KS_MAJORTABRIGHT 4-45
B KS_MAJORTABTOP 4-45
B KS_POLYGONTABS 4-45
BKS_ROUNDEDTABS 4-45
B KS_SQUARETABS 4-45
BKS _ ST ATUSTEXTCENTER 4-45
B KS_STATUSTEXTLEFT 4-45
B KS _ ST ATUSTEXTRIGHT 4-45

NOTVISIBLE 8-33
numeric coprocessor {80287) 2-1 2
numeric coprocessor {80387) 2-1 2, 6-1 5

0
object 7-3
object characteristics and behavior, i nheritance 8-3
Object Class Styles

OBJSTYLE_NOCOPY 8-22
OBJSTYLE_NODELETE 8-22
OBJSTYLE_NODRAG 8-22
OBJSTYLE_NOMOVE 8-22
OBJSTYLE_NOPRINT 8-22
OBJSTYLE_NORENAM E 8-22
OBJSTYLE _ NOSHADOW 8-22
OBJSTYLE _ NOTDEFAUL TICON 8-22
OBJSTYLE_NOTVISIBLE 8-22
OBJSTYLE_TEMPLATE 8-22

object detai ls, Workpl ace
wpclsQueryDetai Is I nfo 8-23
wpQueryDetai lsData 8-23

Object I Ds for System Folders
< WP _CON FIG > 8-41

X-1 6 Appl ication Design Guide

Object I Ds for System Folders (continued)
< WP_DESKTOP > 8-41
< WP_DRIVE > 8-41
< WP _IN FO > 8-41
< WP _NOWHERE > 8-41
< WP _START > 8-41
< WP_SYSTEM > 8-41
< WP_TE M PS > 8-41

Object I nformation Methods
wpSet/wpQueryDefaultHe l p 8-22
wpSet/wpQuerylcon 8-22
wpSet/wpQuerylconData 8-22
wpSet/wpQueryStyle 8-22
wpSet/wpQueryTitle 8-22

object i nstance 7-4
Object I nterface Defi n ition Language 7-6, 8-8
Object I nterface Defin ition Language, OIDL 7-6
object rendering

OBJECT 8-28
OS2FILE 8-28

object templates, Workplace 8-22
Object Usage M ethods

wpAddToObjectUselist 8-30
wpDeleteFromObj Uselist 8-30
wpFindUseltem 8-30

object view 1 - 1 8
object-oriented user envi ronments 8-1
object-or iented user i nterface, des ign ing 8-4
OBJECTID 8-33
objects, parts of 8-9
objects, user i nterface 8-2
OBJSTYLE_NOCOPY 8-22
OBJSTYLE_NODELETE 8-22
OBJSTYLE_NODRAG 8-22
OBJSTYLE_NOMOVE 8-22
OBJSTYLE_NOPRI NT 8-22
OBJSTYLE_NORENAM E 8-22
OBJSTYLE_NOSHADOW 8-22
OBJSTYLE_NOTDEFAUL TICON 8-22
OBJSTYLE_NOTVISIBLE 8-22
OBJSTYLE_TEM P LATE 8-22
OI DL, Object I nterface Defi n ition Language 7-6
OIDL, SOM Object I nterface Defin it ion Language 7-6
on-ch ip cachi ng 2-2
OPEN 8-34
Open Actions 8-20
Open dialog 4-42
Open Views 8-20
Open Views for Workplace Objects

OPEN_CONTENTS 8-20
OPEN_DEFAULT 8-20
OPEN_DETAILS 8-20
OPEN_HELP 8-20
OPEN_RUNNING 8-20
OPEN_SETTINGS 8-20
OPEN_TREE 8-20
OPEN_USER 8-20

OPEN_CONTENTS �20
OPEN_DEFAUL T 8-20
OPEN_DETAILS 8-20
OPEN_HELP 8-20
OPEN_RUN N I N G �20
OPEN.:_SETTINGS �20
OPEN_ TREE 8-20
OPEN_USE R 8-20
OPEN_, Open Views for Workplace Objects �20
OS2286.L IB 3-9
OS2386 . L I B 3-9, 5-1 0
OS2 . H i nc l ude fi l e 3-1 0
OS/2 and the 80386 processor

compati b i l ity with 1 6-bitOS/2 2-1 8
memory objects and memory sharing 2-1 5
page attributes and memory access

protection 2-1 7
process address space 2-1 4

OS/2 base memory, avai lable amount 6-6
OS/2 scheduler 6-1
OS/2 system functions 1 -29
OS/2 system functions, g roups 1 -29
OS/2 2.0

compati b i l ity with version 1 .X 1 -2
Enhanced DOS Session 1 -2
mult ip le DOS sessi ons 1 -2
overview 1-1
portability 1-1
vi rtual device drivers 1 -2
386 features 1-1

override methods 7-4
owner window 1 - 1 5
OWNERDRAW 8-23

p
page 2-7
Page Di rectory table 2-7
page specif iers 2-7
Page Tabl e 2-7

page specif iers 2-7
shared . pages, defin ing 2-7

pageable v i rtual memory 6-1 0
paged envi ronment 1 - 1 2
paged memory model

caching mechanism 2-7
dedicated pagi ng unit 2-7
making memory references 2-7
page 2-7
Page Di rectory table 2-7
Page Tabl e 2-7
performance i m p l ications 2-6

paged vi rtual memory 1 - 1
page, attributes 2-1 7
pagi n g unit 2-2
PAG_COM M IT 4-29
PAG_EXECUTE 4-9

PAG_READ 4-29
PAG_WRITE 4-9
parent class 7-4, 8-3
parent class section, c lass defin ition f i le 7-7
parent process 1 -6
parent_ 7-1 7
passthru section, c lass defi nition f i l e 7-7
path 1 -26
paths 4-51
peer threads 1 -6
persistent objects 8-9
physica1 device drivers {POD) 6-2, 6-1 4
physical devices 1 -5
pi pe handl es

read 1 - 1 0
write 1 - 1 0

p i pes 1 - 1 0
named 1 - 1 0
unnamed 1 -1 0

plotter presentation dr ivers 1 -24
PM

appl ication
appl ication template 3-3
appl ications 1 -3, 3-2 , 3-3
device functions 1 -29
features of 1 - 1 3
structure o f 3-3

PMW I N . H 4-52
poi nter 1 -22
Poly l i nes 4-52
polymorphism 7-4, 7-1 4
Pop-up Menu Methods

wpCiose 8-20
wpCopyObject 8-20
wpCreateFromTemplate 8-20
wpCreateShadowObject �20
wpDelete 8-20
wpDisplayHel p �20
wpFi lterPopupMenu �13
wpHide 8-20
wplnsertPopupMenultems � 1 3
wpMenultemHel pSelected �1 9
wpMenultemSelected 8-1 9
wpModifyPopupMenu 8-1 3
wpMoveObject �20
wpOpen 8-20
wpPrintObject �20
wpRestore 8-20

pop-up menus, parts of �12
pre-emptive m ultitasking 1 -1 2
predefined Workpl ace objects
PRELOAD, defin ing CODE attributes 5-6
preregistered wi ndow c lasses 1 - 1 5
presentation drivers 1 -24

defin it ion of 1 -24
Presentation Manager API

Wi nSetWindowThu nkProc{) 3-31

Index X-1 7

presentation spaces 1 -24
defi n ition of 1 -24

PrfAddProgram 4-37
PrfChangeProgram 4-37
PrfCreateGroup 4-37
PrfDestroyGroup 4-37
PrfQueryDefi n ition 4-37
PrfQueryProgramCategory 4-37
PrfQueryProgramHandl e 4-37
PrfQueryProgramTitles 4-37
PrfRemoveProgram 4-37
pr imary wi ndows 1 - 1 8
pr im itive attri butes 1 -25
pr i nter 6-1 5
Pr i nter object 8-7
pri nter presentation dr ivers 1 -24
pr int ing 4-38
print ing i n the Workplace Shel l 8-46
private c lass i m p lementation fi l e , . PSC 7-1 2
private i mplementation header fi l e for SOM class

.PH 7-1 2
'

pr ivate i nterface, SOM classes 7-1 2
private memory descri ptors 3-1 7
private methods 7-1 2
private semaphores 4-1 7
private wi ndow class 1 - 1 5
privi lege l evels 2-9

l evel 0 2-9
level 1 2-9
l evel 2 2-9
l evel 3 2-9

procedu re entry poi nts, restrictions 2-9
Process I nformation B lock (PIB) 4-1 4
process vi rtual memory map 4-1 1
processes 1 -6, 4-1 4

obta i n i ng i nformation about 4-1 4
processes, defin ition of 1 -6
profi l e functions 1 -30
prog ram object 1 - 1 5
Programmable I nterrupt Contro l ler 6-1 5
programm i ng models

m ixed 1 6-bit 3-5
m i xed 32-bit 3-5
pure 1 6-bit 3-5
pure 32-bit 3-5

protect DLLs, M E M MAN statement 5-20
protect mode 2-3, 6-1
protect mode program l oad i n g 6-1 2
protected memory use 5-1 9
protected system envi ronment 6-1
publ ic class i mplementation f i le , .SC 7-1 2
publ ic header f i le for SOM client, .H 7-1 2
publ ic header f i le , . H 7-23
publ ic i nterface, SOM classes 7-1 2
publ ic wi ndow class 1 -1 5
pul l-down menus 8-1 2
pure 1 6-bit appl ications 3-5

X-1 8 Application Design Guide

pure 32-bit appl icati ons 3-7

Q
querying fi le mode 4-33
querying system i nformation 4-33
queue 1 -1 1

access
fi rst i n , f i rst out (FIFO) 1-1 1
l ast i n , f i rst out (LIFO) 1 - 1 1

defi n it ion 1 -1 1
queued I nput 1 -3
Queues 4-27

R
random-access memory (RAM) 6-1 0
read-only memory (ROM) 6-8
reading fi les asynchronously 4-33
real mode 2-3

memory references 2-4
physical memory addresses 2-3
program addresses 2-3
v i rtual memory, support 2-3

real mode execution 6-4
real mode software 6-1 1

execution of 6-1 1
real mode task 6-1
RECORDITEM 8-30
record , obj ect detai ls 8-23
reflections (CUA), shadows (Workplace) 8-21
reg ions 4-51
reg ister ing a view of an object 8-38
regular threads 1 -7
release order section, c lass defin it ion fi l e 7-7 , 7-8
Renew, SOM Macro 7-1 7
Replaceable SOM functions

SOMCal loc 7-1 9
SOMCiassl n itFuncName 7-1 9
SOM DeleteM odule 7-1 9
SOM Error 7-1 9
SOM Free 7-1 9
SOM Load M odule 7-1 9
SOM Mal loc 7-1 9
SOMOutCharRouti ne 7-1 8, 7-1 9
SOM Real loc 7-1 9

reserved i nstructions 2-1 0
resource compi ler 1 -22
Resource Editors 1 -22
resource fi l e 1 -21

defi n ition of 1 -21
resources

accelerator table 1 -21
bit map 1 -21
d ialog i nc l udes 1 -21
d ialog templates 1 -21
fonts 1 -2 1
icons 1 -2 1

resources (continued)
menu 1 -21
poi nter 1 -22
str ing tables 1 -22
types of 1 -2 1
wi ndow templates 1 -21

Restrictions 6-9
retai ned segments 1 -28
REXX Uti l ity Workplace Functions

SysCreateObject 8-42
SysDeregisterObjectCi ass 8-42
SysQueryCiasslist 8-42
SysRegisterObjectCiass 8-42

REXX, object i nsta l l ation 8-44
r ing 3 segment 2-1 4
root d i rectory 1 -8
run-ti me dynamic l i nking 5-6

s
SaveAs d ialog 4-42
Save/Restore State Methods

wpSaveDeferred 8-29
wpSavel mm ed i ate 8-29
wpSave/wpRestoreData 8-29
wpSave/wpRestorelong 8-29
wpSave/wpRestoreState 8-29
wpSave/wpRestoreStri ng 8-29

Scheme Palette object 8-7
scro l l bars 1 - 1 7
seamless envi ronment 8-6
secondary windows 1 - 1 8
segment selector 2-5

using as i ndex to descr i ptor table 2-5
using to specify privi lege level 2-5

segment swapping 4-1
segmentation unit 2-2
segmented dynam ic l i nk model 3-1 2
segmented memory model 1 -1 , 4-1

address trans lation 2-5
descri ptor table 2-5
log ical address space 2-4
segment selector 2-5

segmented poi nters , use by f lat poi nters 3-1 1
segments, size l i m it 4-1
segment:offset address format 6-1
SEG_DISCARDABLE 4-1 1
selector:offset address format 6-1
semaphores 1 -1 0, 4-1 7

def in it ion 1 - 1 0
event 1 -1 0, 4-1 7
fast-safe RAM 4-1 7
m utex 1 -1 0, 4-1 7
m uxwait 1 -1 0 , 4-1 7
ownership 4-21
private semaphores 4-1 7
ru les for use 4-1 8
shared semaphores 4-1 7

sending output
to hard-copy device 1 -28
to spooler 1 -28

server process 1 - 1 0
session management 4-35
sess ions 1 -2 , 1 -5

defi n it ion of 1 -5
h i e rarchy 1 -6

sett ing fi l e mode 4-33
sett ings notebook

addi ng pages 8-1 1
methods

wpAddObj ectGenerai Page 8-1 1
wpAddSettingsPages 8-1 1
wplnsertSetti ngsPage 8-1 1

removing pages 8-1 2
setti ngs view 8-3
Setti ngs-Notebook M ethods 8-9, 8-1 0
setup variables, KEYNAME 8-41
Setup/Cleanup M ethods

wpFree 8-32
wpln itData 8-32
wpScanSetupString 8-32
wpSetup 8-32
wpUnl n itData 8-32

Set/Cleanup Methods 8-9
Set/Query Object I nformation M ethods 8-9
shadow of an object 8-2
shadows (Workplace) , reflections (CUA) 8-21
shared data, DLLs 5-7
shared memory 1-1 1
shared memory descri ptors 3-1 7
shared resources 1 -4
shared semaphores 4-1 7
Shredder object 8-7
s i b l i ng wi ndows 1 - 1 4
signal functions 4-35
s ignals

CTRL + BREAK 4-35, 4-36
CTRL + C 4-35, 4-36
K I LLPROCESS 4-36

s imple val ue parameters , passing 3-30
sl ider wi ndow control 4-49

messages
SLM_ADDETENT 4-50
SLM_QUERYDETENTPOS 4-50
SLM_QUERYSCALETEXT 4-50
SLM_QUERYSLIDERINFO 4-50
SLM_QUERYTICKPOS 4-50
SLM_QUERYTICKSIZE 4-50
SLM_REMOVEDETENT 4-50
SLM_SETSCALETEXT 4-50
SLM_SETSLI DERINFO 4-50
SLM_SETTICKSIZE 4-50
SLN_CHANGE 4-50
SLN_KI LLFOCUS 4-50
SLN _ SETFOCUS 4-50
SLN_SLIDERTRACK 4-50

Index X-1 9

sl ider wi ndow control (continued)
styles

SLS_BOTTOM 4-50
SLS_BUTIONSBOTIOM 4-50
SLS_BUTTONSLEFT 4-50
SLS_BUTTONSRIGHT 4-50
SLS_BUTTONSTOP 4-50
S LS_CENTER 4-50
SLS_HOM EBOTTOM 4-50
SLS_HOMELEFT 4-50
SLS_HOM ERIGHT 4-50
SLS_HOM ETOP 4-50
SLS_HORIZONTAL 4-49
SLS_LEFT 4-50
SLS_OWNERDRAW 4-50
SLS_PRIMARYSCALE1 4-50
SLS_PRIMARYSCALE2 4-50
SLS_READONLY 4-50
SLS_RI B BONSTRI P 4-50
SLS_RIGHT 4-50
SLS_SNAPTOINCREMENT 4-50
SLS_TOP 4-50
SLS_VERTICAL 4-49

SLM_ADDETENT 4-50
SLM_QUERYDETENTPOS 4-50
SLM_QUERYSCALETEXT 4-50
SLM_QUERYSLIDERIN FO 4-50
SLM_QUERYTICKPOS 4-50
SLM_QUERYTICKSIZE 4-50
SLM_REMOVEDETENT 4-50
SLM_SETSCALETEXT 4-50
SLM_SETSLIDERINFO 4-50
SLM_SETTICKSIZE 4-50
SLN_CHANGE 4-50
SLN_KI LLFOCUS 4-50
SLN_SETFOCUS 4-50
SLN_SLIDERTRACK 4-50
SLS_BOTTOM 4-50
SLS_BUTTONSBOTTOM 4-50
SLS_BUTTONSLEFT 4-50
SLS_BUTTONSRIGHT 4-50
SLS_BUTTONSTOP 4-50
SLS_CENTER 4-50
SLS_HOMEBOTTOM 4-50
SLS_HOMELEFT 4-50
SLS_HOMERIGHT 4-50
SLS_HOMETOP 4-50
SLS_HORIZONTAL 4-49
SLS_LEFT 4-50
SLS_OWNERDRAW 4-50
SLS_P R I MARYSCALE1 4-50
SLS_P R IMARYSCALE2 4-50
SLS_READONL Y 4-50
SLS_RI BBONSTRI P 4-50
SLS_RI G HT 4-50
SLS_SNAPTOINCREMENT 4-50
SLS_TOP 4-50

X-20 Application Design Guide

SLS_VERTICAL 4-49
S M E M IT, SOM envi ronment variable 7-1 2
S M E M IT, SOM Envi ronment Variables 7-1 3
S M INCLUDE, SOM envi ronment variable 7-1 2
S M I NCLUDE, SOM Envi ronment Variables 7-1 3
SMTMP, SOM envi ronment variab l e 7-1 2
SMTMP, SOM Envi ronment variables 7-1 3
SOM class l ibraries 7-32
SOM compi ler 7-6,. 7-1 1 , 8-8
SOM Debug Control Variables

SOM_Assertlevel 7-1 8
SOM_Warnlevel 7-1 8

SOM Debug M acros
SOM_Assert 7-1 8
SOM_Expect 7-1 8
SOM_TestC 7-1 8
SOM_WarnMsg 7-1 8

SOM envi ronment variables
S M E M IT 7-1 2 , 7-1 3
S M INCLUDE 7-1 2, 7-1 3
SMTMP 7-1 2 , 7-1 3

SOM Error Severity Levels
SOM_Fatal 7-1 9
SOM_Ignore 7-1 9
SOM_Warn 7-1 9

SOM function
NewCi ass 7-1 7
somPri ntf 7-23

SOM ID Manipulation Functions
somBegi n Pers istentlds 7-1 8
somEndPersistentlds 7-1 8
som Register iD 7-1 8
somSetExpectedi Ds 7-1 8
somTotaiReg i Ds 7-1 8
somU n i queKey 7-1 8

SOM I D Manipulation M acros
SOM_CheckiD 7-1 8
SOM_Com pareiDs 7-1 8
SOM_I DFromStr ing 7-1 8
SOM_Stri ngFromiD 7-1 8

SOM I Ds 7-1 8
SOM i n it ial ization 7-5
SOM macros

access i nstance data 7-1 7
GetData 7-1 5, 7-1 7
get_ 7-1 7
M ethodDebug 7-1 5, 7-1 7
New 7-1 7
parent_ 7-1 7
Renew 7-1 7
SOM_ERROR 7-1 9
SOM_GetCi ass 7-1 9
SOM_ParentResolve 7-1 7
SOM_Resolve 7-1 7
SOM_ResolveNoCheck 7-1 7
SOM_TEST 7-1 9
underscore macro 7-1 6

SOM naming conventions 7-1 6
SOM run-ti me envi ronment

SOMCiass 7-5
SOMCiassMgr 7-5
SOMObj ect 7-5

SOM Tracing Fac i l ity 7-1 5
somBeg i n Pers istentlds, SOM I D man i pu l ation 7-1 8
SOMCal loc 7-1 9
SOMCiass 7-5, 7-28
SOMCiassl n i tFuncName 7-1 9
SOMCiassMgr 7-5
SOMCiassM grObject 7-5
SOM DeleteModule 7-1 9
somEndPersistentlds, SOM I D manipulation 7-1 8
SOM Error 7-1 9
SOM Free 7-1 9, 7-24
SOMLINK 7-1 4
SOMLoadM odule 7-1 9
SOM Mal loc 7-1 9
somNew 7-23
SOMObject 7-5, 7-1 3, 7-28, 7-32, 8-8
SOMOutCharRouti ne 7-1 9
SOMOutCharRoutine, replaceable SOM function 7-1 8
somPrintf 7-1 9, 7-23
SOM Real loc 7-1 9
somRegisterld, SOM I D manipulation 7-1 8
somSelf 7-1 4
somSetExpectedlds, SOM I D man i pu lation 7-1 8
somThis 7-1 5
somTotai Reglds, SOM I D manipulation 7-1 8
somUniqueKey, SOM I D manipulation 7-1 8
SOM . H , SOM header f i le 7-1 8
SOM_Assert 7-1 8
SOM_Assertlevel 7-1 8
SOM_Checki D , SOM I D manipu lation 7-1 8
SOM_Compare i Ds, SOM I D manipulation 7-1 8
SOM_CurrentCiass 7-31
SOM_ERROR 7-1 9
SOM_Expect 7-1 8
SOM_Fatal 7-1 9
SOM_GetCiass 7-1 9
SOM_I DFromStr ing, SOM I D manipulation 7-1 8
SOM_Ignore 7-1 9
SOM_ParentResolve 7-1 7
SOM_Resolve 7-1 7
SOM_ResolveNoCheck 7-1 7
SOM_Scope 7-1 4
SOM_Stri ng Fromi D , SOM I D manipulation 7-1 8
SOM_TEST 7-1 9
SOM_TestC 7-1 8
SOM_Warn 7-1 9
SOM_Warnlevel 7-1 8
SOM_WarnMsg 7-1 8
Sound object 8-7
source object 8-4
source window 1 -23
Special Needs object 8-7

SpiControi Device 4-39
SpiCreateDevice 4-39
SpiCreateQueue 4-39
SpiDeleteDevice 4-39
SpiDeleteJob 4-39
Spi DeleteQueue 4-39
SpiEnum Device 4-39
SpiEnum Driver 4-39
SpiEnumJob 4-39
SpiEnumPort 4-39
SpiEnumQueue 4-39
SpiEnumQueueProcessor 4-39
Spi HoldJob 4-39
Spi HoldQueue 4-39
SpiPurgeQueue 4-39
SpiQueryDevice 4-39
SpiQueryJob 4-39
SpiQueryJobld 4-39
SpiQueryQueue 4-39
SpiReleaseJob 4-39
SpiReleaseQueue 4-39
SpiSetDevice 4-39
SpiSetJobl nfo 4-39
SpiSetQueue 4-39
spooler functions 1 -30
Spooler object 8-7
standard d ia log boxes 4-42
standard wi ndow elements 1 - 1 6
standard wi ndows 1 - 1 6
standard-error f i l e 1 -9
standard-input f i le 1 -9
standard-output f i le 1 -9
static l i nk ing 5-1
static l i nk ing , advantages 5-2
static l i nk ing, d isadvantages 5-2
storage classes 8-9
stri n g tables 1-22
styl ized form of esc, .CS2 7-1 2
subclass 7-24, 8-3
subclasses 7-4
subclassing SOM classes 7-1 2
subclass ing wi ndows 1 - 1 6
subdi rectory 1 -8
supported 1 6-bit subsystems 3-10
swap space 1 -8, 4-1
SysCreateObject 8-42 , 8-44
SysDeregisterObjectCiass 8-42, 8-44
SysQueryCi asslist 8-42
SysRegisterObjectCiass 8-42, 8-44
system i nformation, querying 4-33
System object 8-7
system queue 1 -20

T
target object 8-4
target window 1 -23

Index X-21

task p rotection 2-8
types of 2-8

Task Register (TR) 2-3
TEM P LATE 8-32
Templates Folder 8-44
Templates folder, Workplace 8-23
templates, Workplace objects 8-22
Thread I nformation B l ock (TIB) 4-1 4
thread 1 1 -6
threads 4-1 2 , 4-1 3 , 4-1 4

controll ing 4-1 3
creating threads 4-1 2
defi n ition of 1 -6
exit ing from 4-1 3
obtai n i ng i nformation about 4-1 4
priority classes 1 -7
pr iority levels 1 -7

thunk 2-1 9, 3-1 2
thunk layer 1 -2
thunk procedure 3-31
thunking l ayer 3-1 3
t i led local descri ptor table (LOT) 3-1 6
ti led memory, maximum address of 3-1 6
ti l i ng 3-1 6
t ime critical threads 1 -7
t ime s l ice, m i n i m u m value 1 -6
t ime sl ic ing 1 -6
t ime-critical threads 1 -7
t imer 4-28, 6-1 5
TITLE 8-32
title-bar icon 1 - 1 7
transformation 1 -27
transformations 4-52
Transl ation Lookaside B uffer (TLB) 2-7
trap gates 2-1 0
type checking 2-8

u
underscore macro, SOM 7-1 6
unnamed pipes 1 - 1 0
unnamed shared memory 4-8
USAGE_M EMORY 8-30
USAGE_OPENVIEW 8-30
USAGE_RECORD 8-30
user envi ronments

appl ication-oriented 8-1
object-oriented 8-1

user i nteraction with objects 8-5
user i nterface 1 - 1 6
user i nterface, object-or iented

icons 8-2
objects 8-2
shadow of an object 8-2
views of an object 8-2

user-generated data exchange 1 -22

X-22 Appl ication Design Guide

v
value set window control 4-48

messages
VM_QUERYITEM 4-49
VM_QUERYITE M ATTR 4-49
VM_QUERYMETRI CS 4-49
VM_ QUERYSELECTEDITEM 4-49
VM_SELECTITEM 4-49

. VM_SETITEM 4-49
VM_S ETITE M ATTR 4-49
VM_SETMETRICS 4-49
VN_DRAGLEAVE 4-48
VN_DRAGOVER 4-48
VN_DROP 4-48
VN_DROPHELP 4-48
VN_ENTER 4-48
VN_IN ITDRAG 4-48
VN_KI LLFOCUS 4-48
VN_SELECT 4-48
VN_SETFOCUS 4-48

styles
VS_BITMAP 4-48
VS_BORDER 4-48
VS_COLOR I N DEX 4-48
VS_ICON 4-48
VS_ITEM BORDER 4-48
VS_RG B 4-48
VS_RI GHTTOLEFT 4-48
VS_ TEXT 4-48

VCDROM 6-1 5
VDD

BIOS 6-1 5
CMOS/Real Time Clock 6-1 5
COM 6-1 5
customizing setti ngs 6-5
Disk/Diskette 6-1 5
DMA Contro l l e r 6-1 5
Expanded M emory Specification 6-1 5
Extended Memory Specification 6-1 5
hooki ng system traps 6-1 3
Keyboard 6-1 �
l oad i n g at boot process 6-1 4
Mouse 6-1 5
numeric coprocesso r (80387) 6-1 5
Pr inter 6-1 5
P rogrammable I nterrupt Contro l l e r 6-1 5
rout ing I N/OUT i nstruction traps 6-2
Timer 6-1 5
VCDROM 6-1 5
VDP M I 6-1 5
VDPX 6-1 5
Video (EGA, VGA, and 851 4/A) 6-1 5

VDD Services 4-37
VDHPopUp 6-1 3
VDPM I 6-1 5
VDPM I .SYS 6-1 2

VDPX 6-1 5
VDPX.SYS 6-1 3
VEM M .SYS 6-7
Video (EGA, VGA, and 851 4/A) 6-1 5
VIEWBUTTON 8-34
VIEWITEM 8-30
v iews of an object

composed view 8-2
contents v iew 8-2
help view of an object 8-3
settings view 8-3

VIO appl ications 4-35
Vi rtual Device Driver M odel 6-1 4
Virtual Device Driver (VDD) 6-2

definit ion of 6-2
Vi rtual device dr ivers

v i rtual expanded memory manager 6-7
vi rtual extended memory manager 6-9

Virtual Device Helper functions 6-2
Virtual Device Helper Services 6-1 3
v i rtual i nstance 6-4
vi rtual machi ne 2-1 1
vi rtual memory 4-1
vi rtual prog rammable i nterrupt contro l ler 6-1 4
vi rtual reg isters 2-1 1
v i rtual screen 4-35
vi rtual 8086 mode 2-1 1 , 3-4, 6-1 , 6-4

enabl i ng 6-4
vi rtual 8086 mode process 6-2
vi rtual 8086 task 2-1 1 , 2-1 2
vi rtual 8086 task, execution of 2-1 2
vi rtual 8086 (V86) task 6-1
visual representation of objects 8-5
VM_QUERYITEM 4-49
VM_ QUERYITEM A TTR 4-49
VM_QUERYMETRICS 4-49
VM_QUERYSELECTEDITEM 4-49
VM_SELECTITEM 4-49
VM_SETITEM 4-49
VM_SETITEMATTR 4-49
VM_SETMETRI CS 4-49
VN_DRAGLEAVE 4-48
VN_DRAGOVER 4-48
VN_DROP 4-48
VN_DROPHELP 4-48
VN_E NTER 4-48
VN_IN ITDRAG 4-48
VN_KI LLFOCUS 4-48
VN_SELECT 4-48
VN_SETFOCUS 4-48
VS_BITMAP 4-48
VS_BORDER 4-48
VS_COLOR I N DEX 4-48
VS_ICON 4-48
VS_ITEM BORDER 4-48
VS_RGB 4-48
VS_RIGHTTOLEFT 4-48

VS _TEXT 4-48
VXMS.SYS 6-9
V86 mode process 6-1

w
WC_CONTAINER 4-46
WC_NOTEBOOK 4-44
WC_SLIDER 4-49
WC _ VALU ESET 4-48
WinAddP rogram 4-37
WinAI IocMem 4-37
Wi nAssoci ateHelplnstance 1 -24
WinAva i i Mem 4-37
WinCheckButton 4-53
WinCheckMenultem 4-53
WinCreateGroup 4-37
WinCreateHeap 4-37
WinCreateHelplnstance 1 -24
WinCreateMsgQueue 3-4
WinCreateObject 4-40, 8-34, 8-40, 8-41 , 8-44, 8-45
W i nDefDigProc 1 -24
WinDefWindowProc 1 -24
WinDeletelboxltem 4-53
WinDeregisterObjectCiass 4-40, 8-40, 8-44, 8-45
WinDestroyHeap 4-37
WinDestroyHelplnstance 1 -24
WinDestroyObject 4-40, 8-41
window 1 -3
window border 1 - 1 7
window class 1 - 1 5
wi ndow controls

container 4-45
notebook 4-44
s l ider 4-49
value set 4-48

w indow envi ronment 1 - 1 3
window handle 1 - 1 5
window h i e rarchy 1 - 1 3
window p rocedu re 1 - 1 5
window rel ationships 1 - 1 3
window sizi n g 1 - 1 5
window sizing buttons 1 - 1 7
window templates 1 -21
window title 1-17
window view 1-17
window words area 1-15
w i ndow-manager functions 1 -30
windowable appl ication 3-2
windowable appl ications 3-2
wi ndows 1 - 1 3
wi ndow, defi n ition o f 1 - 1 3
WinEnableControl 4-53
WinEnableMenultem 4-53
WinEnumObjectCiasses 4-40, 8-40, 8-45
WinFi leDgl 4-43
WinFontDgl 4-43

Index X-23

W i nFreeFi lelcon 4-40
WinFreelcon 8-40
W i nFreeMem 4-37
Win lnitial ize 3-4
Win lnsertlboxltem 4-53
Win lnstStartApp 4-37
Win lsControiEnabled 4-53
Win lsMenultemChecked 4-53
W inlsMenultem E nabled 4-53
WinlsMenultemVal id 4-53
W i n loadFi le lcon 4-40, 8-40
WinlockHeap 4-37
W i nlockWi ndow 4-38
W i nlockWindowUpdate 4-38
WinPopupMenu 4-51
WinPostMsg() function 3-31
WinQueryButtonCheckState 4-53
Wi nQueryCi assThunkProc 4-42
WinQueryDefi nit ion 4-37
WinQueryDesktopBkgnd 4-51
WinQuerylboxCount 4-53
WinQuerylboxltemText 4-53
WinQuerylboxltemTextlength 4-53
Wi nQuerylboxSelectedltem 4-53
WinQueryObject 8-35, 8-40
WinQueryProfi l eData 4-38
WinQueryProfi le lnt 4-38
WinQueryProf i leSize 4-38
WinQueryProf i leStr ing 4-38
Wi nQueryProgramTitles 4-37
Wi nQueryWi ndowlockCount 4-38
WinQueryWi ndowMode 4-42
WinQueryWi ndowThunkProc 4-42
Win Real locMem 4-37
W i n RegisterObjectCiass 4-40, 8-23, 8-40, 8-44, 8-45
WinRegisterWinDestroy 4-38
W i n ReplaceObjectCi ass 4-40, 8-40, 8-45
WinRestoreWindowPos 4-40, 8-40
Wi nSendMsg() function 3-31
WinSetCiassThunkProc 4-42
WinSetDesktopBkgnd 4-51
WinSetF i le lcon 4-40, 8-40
Wi nSetLboxltemText 4-53
Wi nSetMenultemText 4-53
Wi nSetObjectData 4-40, 8-34, 8-35, 8-40, 8-41
WinSetWi ndowThunkProc 4-42
WinShutdownSystem 4-40, 8-40
WinStoreWi ndowPos 4-40, 8-40
Wi nTerm inateApp 4-37
Wi nWriteProfi leData 4-38
Wi nWriteProf i leStri n g 4-38
W M P _MSG1 3-32
W M P _MSG2 3-32
WM_QUIT 3-4
Workplace 4-39
Workplace API
Workplace API Functions

WinCreateObject 8-40

X-24 Application Design Guide

Workplace API Functions (continued)
WinDeregisterObjectCi ass 8-40
WinEnumObjectCiasses 8-40
WinFreelcon 8-40
WinloadFi le lcon 8-40
WinQueryObject 8-40
WinReplaceObjectCiass 8-40
WinResto reWindowPos 8-40
WinSetF i le lcon 8-40
WinSetObjectData 8-40
W i nShutdownSystem 8-40
WinStoreWi ndowPos 8-40

Workpl ace Class L ist Object 8-45
workplace classes, design ing 8-9
Workplace Programm i ng I nterface 8-1 , 8-8
Workpl ace Shel l 8-6
Workplace Storage Classes

WPAbstract 8-9
WPF i leSystem 8-9
WPTransient 8-9

WPAbstract c lass, Workpl ace 8-9
wpAddObj ectGenerai Page, settings notebook

m ethod 8-1 1
wpAddSettingsPage 8-38
wpAddSetti ngsPages, setti ngs notebook method 8-1 1
wpAddToObjectUselist 8-30
wpAddToObjUselist 8-31
wpAI IocMem 8-31
wpCiose 8-20, 8-31
wpclsFindObj ectEnd 8-36, 8-37
wpclsFindObj ectFi rst 8-36, 8-37
wpclsFindObj ectNext 8-36, 8-37
wpclsQueryDefaultHelp 8-36
wpclsQueryDefau ltView 8-36
wpclsQueryDetai ls 8-36
wpclsQueryDetai ls lnfo 8-23, 8-36
wpclsQuerylcon 8-36
wpclsQuerylconData 8-36
wpclsQuerylnstanceFi lter 8-47
wpclsQuerylnstanceType 8-47
wpclsQueryObject 8-36
wpclsQueryStyle 8-36
wpclsQueryTit le 8-36
wpCnrlnsertObject 8-31
wpCnrRemoveObject 8-31
wpCopyObject 8-20
wpCreateFromTemplate 8-20
wpCreateShadowObject 8-20
wpDelete 8-20
wpDeleteFromObj Uselist 8-30, 8-31
wpDisplayHelp 8-20, 8-38
WPFi l eSystem class, Workplace 8-9
wpFi lterPopupMenu 8-1 3
wpFindUseltem 8-30, 8-31
wpFree 8-32
wpFreeMem 8-31
wpHide 8-20

/�.

wplnitData 8-32
wplnsertPopupMenultem 8-38
wplnsertPopupMenultems 8-1 3
wplnsertSettingsPage 8-38
wplnsertSett ingsPage, settings notebook m ethod 8-1 1

General Page
removing from settings notebook 8-1 2
replacing i n setti ngs notebook 8-1 2

wpMenultemHel pSelected 8-1 9 , 8-38
wpMenultemSelected 8-1 9, 8-38
wpModifyPopupMenu 8-1 3 , 8-38
wpMoveObject 8-20
WPObject 8-8
WPObject Class M ethod G roups

D i rect Manipu lation 8-9
E rror Hand l i ng 8-9
Memory M anagement 8-9
Object Usage 8-9
Pop-up Menu 8-9
Save/Restore State 8-9
Settings-Notebook 8-9, 8-1 0
Set/Cleanup 8-9
Set/Query Object I nformation 8-9

WPObject Class M ethods
wpclsFi ndObj ectEnd 8-36
wpclsFindObjectFi rst 8-36
wpclsFi ndObjectNext 8-36
wpclsQueryDefaultHelp 8-36
wpclsQueryDefaultView 8-36
wpclsQueryDetai ls 8-36
wpclsQueryDetai Is I nfo 8-36
wpclsQuerylcon 8-36
wpclsQuerylconData 8-36
wpclsQueryObject 8-36
wpclsQueryStyle 8-36
wpclsQueryTitle 8-36

WPObject KEYNAM ES
CONCUR RENTVI EW 8-34
H ELPPANEL 8-32
ICONFILE 8-32
ICONPOS 8-33
ICONRESOURCE 8-33
M I NW I N 8-34
NOCOPY 8-33
NODELETE 8-32
NODRAG 8-34
NOMOVE 8-33
NOPRI NT 8-33
NORENAME 8-34
NOSHADOW 8-33
N OTVISIBLE 8-33
OBJECTID 8-33
OPEN 8-34
TEMPLATE 8-32
TITLE 8-32
VIEWBUTTON 8-34

wpOpen 8-20, 8-3 1 , 8-38

I

wpPrintObject 8-20, 8-46
wpQueryDetai lsData 8-23
wpRegisterView 8-38
wpRestore 8-20
wpSaveDeferred 8-29
wpSavelmmediate 8-29
wpSave/wpRestoreData 8-29
wpSave/wpRestorelong 8-29
wpSave/wpRestoreState 8-29
wpSave/wpRestoreString 8-29
wpScanSetupStri n g 8-32
wpSetup 8-32, 8-34, 8-41
wpSet/wpQueryDefaultHel p 8-22
wpSet/wpQueryDefaultView 8-22
wpSet/wpQuerylcon 8-22
wpSet/wpQuerylconData 8-22
wpSet/wpQueryStyle 8-22
wpSetlwpQueryTitle 8-22
WPTransient c lass, Workplace 8-9
wpUnln itData 8-32
writ ing f i les asynchronousl y 4-34
WYSIWYG 3-4

X
XMS Version 2.0

i nstal lation 6-9
restrictions 6-9
Virtual Extended Memory M anager (VXMS) 6-9
VXMS.SYS 6-9

z
z order 1 - 1 4

Numerics
0:32 memory model 2-1 3
1 6-Bit Functions

Code-Page M an agement
DosCaseMap 4-34
DosGetCol l ate 4-34
DosGetCp 4-34
DosGetCtrylnfo 4-34
DosGetDBCSEv 4-34
DosSetCp 4-34
DosSetProcCp 4-34

Contro l l i ng Threads
DosResumeThread 4-1 3
DosSuspendThread 4-1 3

C reating Threads
DosCreateThread 4-1 2

Debuggi n g Programs
DosPtrace 4-1 6

Dete rm i ni n g Avai lable Memory
DosMemAvai l 4-1 1

Device 1/0
DosBeep 4-30
DosCLIAccess 4-30
DosDevConfig 4-30

Index X-25

1 6-Bit Functions (continued)
Device 110 (continued)

DosDeviOCtl 4-30
DosDevi0Ctl2 4-30
DosPhysicaiDisk 4-30
DosPortAccess 4-30

Discard i ng Memory Objects
DoslockSeg 4-1 1
DosUnlockSeg 4-1 1

DosGetSh rSeg 4-2
Dynamic L inking

Bad Dynlink 4-29
DosFreeModule 4-29
DosFreeResource 4-29
DosGetEnv 4-29
DosGetMachineMode 4-29
DosGetModeName 4-29
DosGetModHandle 4-29
DosGetProcAddr 4-29
DosGetResource2 4-29
DosGetVersion 4-29
DosloadModule 4-29
DosQAppType 4-29

Ending Other Process
Dos K i i i P rocess 4-1 4

Error M anagement
DosErrCiass 4-35
DosError 4-35

Exit ing from Threads and Processes
DosExit 4-1 3

F i le I n it ial ization
WinQueryProfi leData 4-38
WinQueryProfi le lnt 4-38
WinQueryProfi l eSize 4-38
WinQueryProfi l eString 4-38
Wi nWriteProfi leData 4-38
WinWriteProf i leStr ing 4-38

F i le Systems
DosBufReset 4-31
DosChDi r 4-31
DosChgFi lePtr 4-31
DosCiose 4-31
DosCopy 4-31
DosDelete 4-31
DosDupHandle 4-31
DosEditName 4-31
DosEnumAttribute 4-31
DosFi le iO 4-31
DosFi lelocks 4-31
DosFindCiose 4-31
DosFindFi rst 4-31
DosFindNext 4-31
DosFindNotifyCiose 4-31
DosFindNotifyFi rst 4-31
DosFindNotifyNext 4-31
DosFSAttach 4-31
DosFSCtl 4-31
DosMkDi r 4-31
DosMove 4-31

X-26 Application Design Guide

1 6-Bit Functions (continued)
F i le Systems (continued)

DosNewSize 4-31
DosOpen 4-31
DosQCurDir 4-31
DosQCu rDisk 4-31
DosQFHandState 4-31
DosQFi l el nfo 4-31
DosQFSAttach 4-31
DosQFSi nfo 4-31
DosQHandType 4-31
DosQPathlnfo 4-31
DosQSysl nfo 4-31
DosQueryFi leMode 4-31
DosQVerify 4-31
DosRead 4-31
DosReadAsync 4-31
DosRmDir 4-31
DosScanEnv 4-31
DosSearchPath 4-31
DosSel ectoisk 4-31
DosSetFHandState 4-32
DosSetFi le lnfo 4-32
DosSetFi leMode 4-32
DosSetFSi nfo 4-32
DosSetMaxFH 4-32
DosSetPathlnfo 4-32
DosSetVerify 4-32
DosShutDown 4-32
DosWrite 4-32
DosWriteAsync 4-32

Freeing Memory
DosFreeMem 4-4

Generati ng Dynamic Code
DosCreateCSAi i as 4-9

Getti ng Thread and Process I nformation
DosGetEnv 4-1 4
DosGetlnfoSeg 4-1 4
DosGetPI D 4-1 4
DosGetPP I D 4-1 4
DosGetPrty 4-1 4

Hand l ing Critical Sections
DosEnterCritSec 4-1 4
DosExitCritSec 4-1 4

Heap M anagement
W i nAI IocMem 4-37
Wi nAvai i Mem 4-37
WinCreateHeap 4-37
W i nDestroyHeap 4-37
WinFreeMem 4-37
WinlockHeap 4-37
W i n Real l ocMem 4-37

I nstal l ed P rogram List
PrfAddProgram 4-37
PrfChangeProgram 4-37
P rfCreateGroup 4-37
PrfDestroyGroup 4-37
P rfQueryDef init ion 4-37
P rfQueryProgramCategory 4-37

1 6-Bit Functions (continued)
� I nstal l ed Program List (continued)

PrfQueryProgramHandl e 4-37
PrfQueryProgramTitles 4-37
PrfRemoveProgram 4-37
Wi nAddProgram 4-37
WinCreateGroup 4-37
Win I nstStartApp 4-37
WinQueryDefin it ion 4-37
WinQueryProgramTitles 4-37
Wi nTerm inateApp 4-37

Memory Al location
DosAI IocHuge 4-2
DosAI IocSeg 4-2

Memory Subal l oction
DosSubAI IocMem 4-4
DosSubFreeMem 4-4
DosSubSetMem 4-4

� Memory-Management
DosAI IocHuge 4-2
DosAI IocSeg 4-2
DosAI I ocShrSeg 4-2
DosCreateCSAi ias 4-2
DosGetHugeShift 4-2
DosGetSeg 4-2
DosG iveSeg 4-2
DoslockSeg 4-2
DosMemAva i l 4-2
DosReal locHuge 4-2

� DosReal locSeg 4-2
DosSizeSeg 4-2
DosSubAI IocMem 4-2
DosSu bFreeM em 4-2
DosSu bSetMem 4-2
DosUnlockSeg 4-2

Memory-M anagement Functions
DosFreeSeg 4-2

M essage Retrieval
DosGetMessage 4-34
Doslns Message 4-34

�' DosPutMessage 4-34
Pop-Up M enus

WinPopUpMenu 4-51
Query i ng F i l e M ode

DosQFi leMode 4-33
Query ing System I nformation

DosQSysl nfo 4-33
Read i n g Async h ronously

DosReadAsync 4-33
Searchi n g Di rector ies

DosFindCiose 4-32
DosFi ndFi rst 4-32
DosFindNext 4-32

Semaphores
DosCioseSem 4-1 9
DosCreateSem 4-1 9
DosFSRamSemCiear 4-1 9

� DosFSRamSemRequest 4-1 9
Dos M uxSemWait 4-1 9

1 6-Bit Functions (continued)
Semaphores (continued)

DosOpenSem 4-1 9
DosSemCiear 4-1 9
DosSemRequest 4-1 9
DosSemSet 4-1 9
DosSemSetWait 4-1 9
DosSemWait 4-1 9

Session Management
DosSelectSession 4-35
DosSetSession 4-35
DosSM RegisterDD 4-35
DosStartSession 4-35
DosStopSession 4-35

Sett ing Avai lable N u m ber of F i l e Handles
DosSetMaxFH 4-34

Sett ing the F i le M ode
DosSetFi leMode 4-33

Signals
DosHoldSignal 4-35
DosSetSigHandler 4-35

Spooler
DosPri ntDestAdd 4-39
DosPrintDestControl 4-39
DosPri ntDestDel 4-39
DosPrintDestEnum 4-39
DosPri ntDestGetlnfo 4-39
DosPri ntDestSetl nfo 4-39
DosPrintDriverEnum 4-39
DosPri ntJobConti nue 4-39
DosPri ntJobDel 4-39
DosPrintJobEnum 4-39
DosPri ntJobGetld 4-39
DosPrintJobGetlnfo 4-39
DosPri ntJobPause 4-39
DosPr intJobSetlnfo 4-39
DosPri ntPortEnum 4-39
DosPri ntQAdd 4-39
DosPrintQConti nue 4-39
DosPri ntQDel 4-39
DosPrintQEnum 4-39
DosPri ntQGetlnfo 4-39
DosPri ntQPause 4-39
DosPri ntQProcessorEnum 4-39
DosPri ntQPurge 4-39
DosPri ntQSetlnfo 4-39

Starti ng Programs
DosExecPgm 4-1 6

Using Named P i pes
DosCai i N m P i pe 4-27
DosConnectNm P i pe 4-27
DosCreateNmPipe 4-27
DosDisConnectNm P i pe 4-27
DosPeekNm P i pe 4-27
DosQNmPHandState 4-27
DosQueryNm P i pe l nfo 4-27
DosQueryNm P i peSemState 4-27
DosRawRead N m P i pe 4-27
DosRawWriteNmPipe 4-27

Index X-27

1 6-Bit Functions (continued)
Using Named P ipes (continued)

DosSetNm Handl nfo 4-27
DosSetNm P i peSem 4-27
DosTransactNm P i pe 4-27
DosWaitNm P i pe 4-27

Usi n g Named Shared Memory
DosAI I ocShrSeg 4-6
DosGetSh rSeg 4-6

Using Queues
DosCioseQueue 4-28
DosCreateQueue 4-28
DosOpenQueue 4-28
DosPeekQueue 4-28
DosPurgeQueue 4-28
DosQueryQueue 4-28
DosReadQueue 4-28
DosWriteQueue 4-28

Using Threads and P rocesses
DosCai i Back 4-1 2
DosCreateTh read 4-1 2
DosCWait 4-1 2
DosE nterCritSec 4-1 2
DosExecPgm 4-1 2
DosExit 4-1 2
DosExitCritSec 4-1 2
DosExitlist 4-1 2
DosGetEnv 4-1 2
DosGetlnfoSeg 4-1 2
DosGetPI D 4-1 2
DosGetPPID 4-1 2
DosGetPrty 4-1 2
DosKi i i P rocess 4-1 2
DosPTrace 4-1 2
DosQSysl nfo 4-1 2
DosResumeThread 4-1 2
DosRetForward 4-1 2
DosR2StackReal loc 4-1 2
DosSetPrty 4-1 2
DosSuspendThread 4-1 2

Using Timers
DosGetDateTime 4-28
DosSetDateTi m e 4-28
DosSi eep 4-28
DosTimerAsync 4-28
DosTimerStart 4-28
DosTi merStop 4-28

Usi ng Unnamed P i pes
DosCreatePipe 4-26
DosMakePipe 4-26

Using Unnamed Shared Memory
DosGetSeg 4-8
DosGiveSeg 4-8

Waiting for Threads
DosCWait 4-1 4

Window Locki n g
WinlockWindow 4-38
WinlockWi ndowUpdate 4-38
Wi nQueryWindowlockCount 4-38

X-28 Application Design Guide

1 6-Bit Functions (continued)
Window Management

WinRegisterW i nDestroy 4-38
Writing Asynchronously

DosWriteAsync 4-34
1 6-bit semaphores, shortco m ings 4-1 7
1 6-bit subsystems 4-37
1 6 : 1 6 a l iases 2-1 9
1 6-..32 thunk 3-1 4
32-Bit Functions

Bit M aps
GpiDrawBits 4-51

Characters
GpiQueryCharBreakExtra 4-52
GpiQueryCharExtra 4-52
GpiQueryCharOutl i n e 4-52
GpiQueryFaceString 4-52
G piSetCharBreakExtra 4-52
GpiSetCharExtra 4-52

Checki n g a Process's Virtual-Memory Map
DosQueryMem 4-1 1

Code-Page M anagement
DosMapCase 4-34
DosQueryCollate 4-34
DosQueryCp 4-34
DosQueryCtrylnfo 4-34
DosQueryDBCSEnv 4-34
DosSetProcessCp 4-34

Contro l l i n g Threads
DosResumeThread 4-1 3
DosSuspendThread 4-1 3

Creating Threads
DosCreateThread 4-1 2

Customizing Help
DdfBegi nlist 4-41
DdfBitmap 4-41
DdfEndlist 4-41
DdfHyperText 4-41
Ddflnform 4-41
Ddf ln itial ize 4-41
Ddflistltem 4-41
DdfMetafi l e 4-41
DdfPara 4-41
DdfSetColor 4-41
DdfSetFont 4-41
DdfSetFontStyle 4-41
DdfSetFormat 4-41
DdfSetTextAi i g n 4-41
DdfText 4-41

Debug g i ng Programs
DosDebug 4-1 6

Desktop Backgrou nd
WinQueryDesktopBkgnd 4-51
WinSetDesktopBkgnd 4-51

Device 110
DosBeep 4-30
DosDevConfig 4-30
DosDeviOCtl 4-30
DosPhysicaiD isk 4-30

32-Bit Functions (continued)
Dialog Boxes

WinFi leDgl 4-43
WinFontDgl 4-43

DosAI IocMem 4-2
DosSetFHState 4-32
Dynam ic L inking

DosFreeM odule 4-29
DosFreeResou rce 4-29
DosGetResource 4-29
DosLoad M odule 4-29
DosQueryAppType 4-29
DosQuery M oduleHandle 4-29
DosQueryModuleName 4-29
DosQueryProcAddr 4-29
DosQueryProcType 4-29
DosQueryResourceSize 4-29

Ending Other Process
Dos Ki i i Process 4-1 4

E rror Management
DosErrCiass 4-35
DosError 4-35

Exception Management
DosAcknowledgeSignai Exception 4-36
DosEnterM ustComplete 4-36
DosExitMustComplete 4-36
DosRaiseException 4-36
DosSendSignai Exception 4-36
DosSetExceptionHandler 4-36
DosSetSignai ExceptionFocus 4-36
DosUnsetExceptionHandler 4-36
DosUnwindException 4-36

Exit ing from Threads and Processes
DosExit 4-1 3

F i le Systems
DosCancei LockRequest 4-32
DosCiose 4-31
DosCopy 4-31
DosCreateD i r 4-31
DosDelete 4-31
DosDeleteDi r 4-31
DosDupHandle 4-31
DosEditName 4-31
DosEnumAttr ibute 4-31
DosFi ndCiose 4-31
DosFindFirst 4-31
DosFi ndNext 4-31
DosFSAttach 4-31
DosFSCtl 4-31
DosMove 4-31
DosOpen 4-31
DosQueryCurrentD i r 4-31
DosQueryCurrentDisk 4-31
DosQueryFHState 4-31
DosQueryFi le lnfo 4-31
DosQueryFSAttach 4-31
DosQueryFSinfo 4-31
DosQueryHType 4-31
DosQueryPath l nfo 4-31

32-Bit Functions (continued)
F i l e Systems (continued)

DosQuerySysl nfo 4-31
DosQueryVerify 4-31
DosRead 4-31
DosResetBuffer 4-31
DosScanEnv 4-31
DosSearchPath 4-31
DosSetCurrentD i r 4-31
DosSetDefaultDisk 4-31
DosSetFi le lnfo 4-32
DosSetFi leLocks 4-31
DosSetFi lePtr 4-31
DosSetFi l eSize 4-31
DosSetFSi nfo 4-32
DosSetMaxFH 4-32
DosSetPathl nfo 4-32
DosSetRei M axFH 4-32
DosSetVerify 4-32
DosShutDown 4-32
DosWrite 4-32

Fonts
G p i LoadPubl icFonts 4-52
GpiQueryLogicai Font 4-52
GpiUnloadPubl icFonts 4-52

Freeing Memory
DosFreeMem 4-4

Generating Dynamic Code
DosAI IocMem 4-9

Getti ng Thread and Process I nformation
DosGetlnfoBiocks 4-1 4
DosQuerySysl nfo 4-1 4

Hand l i ng Critical Sections
DosEnterCritSec 4-1 4
DosExitCritSec 4-1 4

M emory Al location
DosAI IocMem 4-2

Memory Subal location
DosSubUnsetMem 4-4

Memory-Management
DosAI IocSharedMem 4-2
DosFreeMem 4-2
DosGetNamedSharedMem 4-2
DosGetSharedMem 4-2
DosGiveSharedMem 4-2
DosQueryMem 4-2
DosSetMem 4-2
DosSubSetMem 4-2
DosSubUnsetMem 4-2

Memory-M anagement Functions
DosSubAIIocMem 4-2
DosSubFreeMem 4-2

M essage Retrieval
Dos l nsertMessage 4-34
DosPutMessage 4-34
DosQueryMessageCp 4-34

M i g ration
WinQueryCiassThunkProc 4-42
Wi nQueryWindowMode 4-42

I ndex X-29

32-Bit Functions (continued)
M i g ration (continued)

WinQueryWi ndowThunkProc 4-42
WinSetCi assThunkProc 4-42
WinSetWindowThunkProc 4-42

Paths and Regions
GpiPathToRegion 4-51

Poly l ines
G p i Polyl i neDisjo int 4-52

Querying F i l e M ode
DosQueryFi le l nfo 4-33

Querying System I nformation
DosQuerySysl nfo 4-33

Regions
GpiF ioodFi l l 4-51
Gpi FrameRegion 4-51

Searc h i ng Di rector ies
DosFi ndCiose 4-32
DosFindFi rst 4-32
DosFindNext 4-32

Semaphores
DosAddM uxWaitSem 4-1 9
DosCioseEventSem 4-1 9
DosCioseM utexSem 4-1 9
DosCioseMuxWaitSem 4-1 9
DosCreateEventSem 4-1 9
DosCreateM utexSem 4-1 9
DosCreateM uxWaitSem 4-1 9
DosDeleteM uxWaitSem 4-1 9
DosOpenEventSem 4-1 9
DosOpenM utexSem 4-1 9
DosOpenMuxWaitSem 4-1 9
DosPostEventSem 4-1 9
DosQueryEventSem 4-1 9
DosQueryM utexSem 4-1 9
DosQuery M uxWaitSem 4-1 9
DosReleaseM utexSem 4-1 9
DosRequestM utexSem 4-1 9
DosResetEventSem 4-1 9
DosWaitEventSem 4-1 9
DosWaitMuxWaitSem 4-1 9

Session M anagement
DosSelectSession 4-35
DosSetSession 4-35
DosStartSession 4-35
DosStopSession 4-35

Setti ng Avai lable N u m ber of F i l e Handles
DosSetMaxFH 4-34
DosSetRei M axFH 4-34

Sett ing Memory Com m itment and Access
DosSetMem 4-1 1

Signal l i ng Events with Semaphores
DosCioseEventSem 4-20
DosCreateEventSem 4-20
DosOpenEventSem 4-20
DosPostEventSem 4-20
DosQueryEventSem 4-20
DosResetEventSem 4-20
DosWaitEventSem 4-20

X-30 Appl ication Design Guide

32-Bit Functions (continued)
Spooler

SpiControi Device 4-39
SpiCreateDevice 4-39
SpiCreateQueue 4-39
Spi DeleteDevice 4-39
SpiDeleteJob 4-39
Spl DeleteQueue 4-39
SpiEnumDevice 4-39
SpiEnum Driver 4-39
SpiEnumJob 4-39
SpiEnumPort 4-39
SpiEnumQueue 4-39
SpiEnumQueueProcessor 4-39
SpiHoldJob 4-39
Spi HoldQueue 4-39
SpiPurgeQueue 4-39
SpiQueryDevice 4-39
SpiQueryJob 4-39
SpiQueryJobld 4-39
SpiQueryQueue 4-39
SpiReleaseJob 4-39
SpiReleaseQueue 4-39
SpiSetDevice 4-39
SpiSetJoblnfo 4-39
SpiSetQueue 4-39

Starting Programs
DosExecPgm 4-1 6

Transformations
GpiConvertWith M atrix 4-52

Using Named Pi pes
DosCa i i N P i pe 4-27
DosConnectNP i pe 4-27
DosCreateNPipe 4-27
DosDisConnectNPipe 4-27
DosPeekNPipe 4-27
DosQueryNPHState 4-27
DosQueryNPipelnfo 4-27
DosQueryNPi peSemState 4-27
DosSetNPHState 4-27
DosSetNPi peSem 4-27
DosTransactNPipe 4-27
DosWaitNPipe 4-27

Usi n g Named Shared M emory
DosAI IocSharedMem 4-6
DosGetNamedSharedMem 4-6

Usi ng Queues
DosCi oseQueue 4-28
DosCreateQueue 4-28
DosOpenQueue 4-28
DosPeekQueue 4-28
DosPurgeQueue 4-28
DosQueryQueue 4-28
DosReadQueue 4-28
DosWriteQueue 4-28

Using Semaphores for M u lt ip le Waiti ng
DosAdd M uxWaitSem 4-25
DosCioseM uxWaitSem 4-25
DosCreateM uxWaitSem 4-25

�

�

32-Bit Functions (continued)
Usi ng Semaphores for M u lt ip le Waiting (continued)

DosDeleteMuxWaitSem 4-25
DosOpenMuxWaitSem 4-25
DosQueryMuxWaitSem 4-25
DosWaitM uxWaitSem 4-25

Using Semaphores for M utual Exc l us i on
DosCioseM utexSem 4-21
DosCreateM utexSem 4-21
DosOpenMutexSem 4-21
DosQueryM utexSem 4-21
Dos ReleaseMutexSem 4-21
Dos RequestMutexSem 4-21

Using Threads and Processes
DosCreateThread 4-1 2
DosDebug 4-1 2
DosEnterCritSec 4-1 2
DosExecPgm 4-1 2
DosExit 4-1 2
DosExitCritSec 4-1 2
DosExitlist 4-1 2
DosGetlnfoBiocks 4-1 2
Dos K i i iProcess 4-1 2
DosQSysl nfo 4-1 2
DosResumeThread 4-1 2
DosSetPriority 4-1 2
DosSuspendThread 4-1 2
DosWaitChi ld 4-1 2
DosWaitThread 4-1 2

Using Timers
DosAsyncTimer 4-28
DosGetDateTime 4-28
DosSetDateTi m e 4-28
DosSieep 4-28
DosStartTimer 4-28
DosStopTimer 4-28

Using Unnamed Shared Memory
DosGetSharedMem 4-8
DosGiveSharedMem 4-8

VDD Services
DosCioseVDD 4-37
DosOpenVDD 4-37
DosRequestVDD 4-37

Waiti ng for Threads
DosWaitChi l d 4-1 4
DosWaitThread 4-1 4

Workplace
WinCreateObject 4-40
WinDeregisterObjectCi ass 4-40
WinDestroyObject 4-40
WinEnumObj ectCiasses 4-40
WinFreeF i l e lcon 4-40
WinloadFi le lcon 4-40
WinRegisterObjectCi ass 4-40
WinReplaceObjectCi ass 4-40
WinRestoreWi ndowPos 4-40
Wi nSetF i lelcon 4-40
Wi nSetObjectData 4-40
Wi nShutdownSystem 4-40

32-Bit Functions (continued)
Workplace (continued)

WinStoreWindowPos 4-40
32-Bit Migration 4-41
32-Bit OS/2 Memory Layout 3-1 5
32-Bit PM Helper Macros

WinCheckButton 4-53
WinCheckMenultem 4-53
W i n De l etelboxltem 4-53
WinEnableControl 4-53
W inEnableMenultem 4-53
W i n lnsertlboxltem 4-53
W i nlsControi Enabled 4-53
WinlsMenultemChecked 4-53
W i n lsMenultemVal id 4-53
WinMenultem E nabled 4-53
WinQueryButtonCheckState 4-53
WinQueryLboxCount 4-53
WinQueryLboxltemText 4-53
WinQuerylboxltem Textlength 4-53
W inQuerylboxSelectedltem 4-53
WinSetlboxltemText 4-53
WinSetMenultemText 4-53

32-+1 6 thunk 3-1 3
64-bit barrel shifter 2-2
80286 p rocessor, mode switching 6-3
80386 addressing modes

protect mode 2-3
real mode 2-3

80386 architecture 2-1 , 2-2, 2-3, 2-6, 2-8, 2-9, 2-1 0,
2-1 1 , 2-1 2 , 2-1 3

coprocessing 2-1 3
i nput/output p rocessi ng 2-1 1
i nterrupts 2-1 0
memory addressi n g 2-3
n umeric coprocesso r 2-1 2
pagi ng 2-6
physical characteristics 2-2
protection 2-8, 2-9, 2-1 0

l i m it check i ng 2-8
privi lege levels 2-9
procedu re entry poi nts, restrictions 2-9
reserved i nstructions 2-1 0
Type Checki n g 2-8

vi rtual 8086 mode 2-1 1
80386 ch ip

control registers
CRO 2-3
CR1 2-3
CR2 2-3
CR3 2-3

debug registers
ORO 2-3
DR1 2-3
DR2 2-3
DR3 2-3
DR4 2-3
DR5 2-3
DR6 2-3

Index X-31

80386 ch ip (continued)
debug reg isters (continued)

DR7 2-3
memory management reg isters

G lobal Descri ptor Tab l e Register (GDTR) 2-3
I nterrupt Descriptor Tabl e Register (I DTR) 2-3
Local Descr iptor Tab l e Register (LDTR) 2-3
Task Register (TR) 2-3

1 6-bit reg isters, number of 2-3
32-bit general registers, number of 2-2

80386 processor
dedicated units

bus i nterface unit 2-2
code prefetch u n it 2-2
execution unit 2-2
i nstruction decode unit 2-2
pagi ng unit 2-2
segmentation un it 2-2

80386 processor, mode switch i n g 6-3
8086 emulation 6-2
8086 i nstruction decodi n g 6-2

Special Characters
.ASSOCTABLE EAs, Workpl ace 8-46
.CS2, SOM C-language b inding fi l e 7-1 2
.C, SOM C-language b inding fi le 7-1 2
. DEF, module-defin ition fi l e 5-6
.DEF, SOM C-language b inding fi le 7-1 2
. H , publ ic header fi l e 7-1 2 , 7-23
. H , SOM C-language b ind ing fi l e 7-1 2
. I H , c lass i mplementation fi l e 7-22
. I H , SOM C-language b ind ing f i le 7-1 2
. L I B f i les 3-1 2
.LONGNAME EAs, Workplace 8-46
.PH, SOM C-language b ind ing fi l e 7-1 2
. PSG, SOM C-l anguage b inding f i l e 7-1 2
.SC, SOM C-language b inding fi l e 7-1 2, 7-29
< WP CON FIG > 8-41
< WP _DESKTOP > 8-41
< WP DRIVE > 8-41
< WP_IN FO > 8-41
< WP NOWHERE > 8-41
< WP START > 8-41
< WP _SYSTEM > 8-41
< WP TEM PS > 8-41
/Gt + compi lation option 3-1 0
_Far1 6 keyword 3-29
_Far1 6 _Pascal keyword 3-1 1 , 3-20
_Seg 1 6 keyword 3-1 1 , 3-20, 3-29, 3-30
:acvi ewport 4-41
:br 4-41
:ddf 4-41
:docprof 4-41
:font 4-41
:table 4-41
:title 4-41

X-32 Appl ication Design Guide

#pragm a l i nkage d i rective 3-29
#pragma seg 1 6 d i rective 3-31
#pragma seg 1 6 d i rective, use of 3-1 9
#pragma stack1 6 d i rective 3-29

® I B M , OS/2 and Operating System/2 are
registered trademarks of
I nternational Business Machines Corporation

- -- - -- -- - -
= :..: ==
= - -::§��

© IBM Corp. 1 992
I nternational Business
Mach ines Corporation
Printed in the
Un ited States of America
Al l Rights Reserved
1 0G6260

S 1 0 G - 6 2 6 0 - 0 0

P 1 0 G 6 2 6 0

